Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#
rm(list =ls())
# load libraries ----
requiredPackages = c('fadnUtils','data.table', 'devtools','jsonlite', 'ggplot2',
'gdxdt', 'tidyverse', 'xlsx', 'gdxrrw')
for(p in requiredPackages){
if(!require(p,character.only = TRUE)) install.packages(p)
library(p,character.only = TRUE)
}
# set gams path ----
igdx("d:/gams/win64/34.3")
# load functions----
source("D:/data/fadn/lieferung_20210414/yang/FadntoCapri/myfun_fadn.R")
# set FADN project directory ---
CurrentProjectDirectory = "D:/data/fadn/lieferung_20210414/yang/fadn_work_space"
# ceate a data.dir
create.data.dir(folder.path = CurrentProjectDirectory)
# Once the data.dir is created, we must declare that we are working with it
set.data.dir(CurrentProjectDirectory)
rds.dir = paste0(get.data.dir(),"/rds/")
EU_list <- c("AUT", "BEL", "BGR", "HRV", "CYP", "CZE", "DNK",
"EST", "FIN", "FRA", "DEU", "GRC", "HUN", "IRL",
"ITA", "LVA", "LTU", "LUX", "MLT", "NLD", "POL",
"PRT", "ROU", "SVK", "SVN", "ESP", "SWE")
# crops -----
# convert and load FADN data, save the str data in path: D:\data\fadn\lieferung_20210414\yang\fadn_work_space\rds\crops
# DEU and NED took 106s
# only DEU took 77s
fadn.str.data <- convert.load.str.crops(countries ="DEU")
# filter the crops data
fadn.str.crops <- fadn.str.data$crops
# Export crops gdx file ----
# step 1: Convert str data to NUTS 2016 ---
fadn.str.crops <- fadnUtils::NUTS.convert.all(fadn.str.crops,"DEU", 2016)
# filter LEVL
fadn.str.crops.levl <- fadn.str.crops %>%
mutate(ORGANIC=case_when(
ORGANIC=="org-2" ~ "Organic",
TRUE ~ "Conventional"))%>%
mutate(value2 = WEIGHT*VALUE) %>%
filter(VARIABLE == "LEVL" ) %>%
select(-(TF8:SIZ6),-WEIGHT, -ALTITUDE)
# step 2: export a gdx
# export DEU gdx took 1.25 mins
time.begin <- Sys.time()
export.crops = TRUE
if(export.crops){
group_by_lst <- c("COUNTRY","REGION","NUTS1","NUTS2","NUTS1_final", "NUTS2_final", "EU")
crops.groupby <- lapply(seq_along(group_by_lst),
function(i) fadn.filter(fadn.str.crops.levl,
group_by_lst[i],
"CROP")) %>%
bind_rows() %>%
mutate(REG_TYPE = case_when(REG_TYPE == "COUNTRY" ~"MS",
REG_TYPE == "REGION" ~ "FADN_REGION",
REG_TYPE == "NUTS1" ~ "NUTS1_ORG",
REG_TYPE =="NUTS2"~ "NUTS2_ORG",
REG_TYPE =="NUTS1_final"~ "Xinxin_NUTS1",
REG_TYPE =="NUTS2_final" ~"Xinxin_NUTS2",
TRUE ~ REG_TYPE)) %>%
mutate_if(is.factor, as.character)
col_names_crops <- colnames(crops.groupby)
# library(gdxrrw)
# igdx("d:/gams/win64/34.3")
cat("Export the gdx: ", getwd(), "/gdx/crops_LEVL_new.gdx",sep = "")
# write gdx: levl: value*WEIGHT
writegdx(dt = crops.groupby,
gdx = paste0(getwd(), "/gdx/crops_LEVL_new.gdx"),
name = "DataOut",
valcol= "sum_Value",
uelcols= col_names_crops[!col_names_crops %in% "sum_Value"],
type="parameter")
}
time.diff <- Sys.time() - time.begin
# animals ----
convert.str.animal = FALSE
if (convert.str.animal){
system.time(source("D:/data/fadn/lieferung_20210414/yang/FadntoCapri/animals.R"))
}
# load animals str data
# loading the animals data took 316.89s
system.time(fadn.str.animals.df <- readRDS(paste0(get.data.dir(),"/rds/str_dir/fadn.str.animal.rds")))
# Convert str data to NUTS 2016 ---
#
fadn.str.animals <- fadnUtils::NUTS.convert.all(fadn.str.animals.df,"all",2016)
fadn.str.animal.an <- fadn.str.animals %>%
mutate(ORGANIC=case_when(
ORGANIC=="org-2" ~ "Organic",
TRUE ~ "Conventional"
),YEAR=as.factor(YEAR)) %>%
mutate(value2 = WEIGHT*value) %>%
filter(variable=="AN") %>%
rename(VARIABLE= variable) %>%
select(-(TF8:SIZ6),-WEIGHT)
export.animals = TRUE
system.time({
group_by_lst <- c("COUNTRY","REGION","NUTS1","NUTS2","NUTS1_final", "NUTS2_final", "EU")
animals.groupby <- lapply(seq_along(group_by_lst),
function(i) fadn.filter(fadn.str.animal.an,
group_by_lst[i],
"ANIM")) %>%
bind_rows() %>%
mutate(REG_TYPE = case_when(REG_TYPE == "COUNTRY" ~"MS",
REG_TYPE == "REGION" ~ "FADN_REGION",
REG_TYPE == "NUTS1" ~ "NUTS1_ORG",
REG_TYPE =="NUTS2"~ "NUTS2_ORG",
REG_TYPE =="NUTS1_final"~ "Xinxin_NUTS1",
REG_TYPE =="NUTS2_final" ~"Xinxin_NUTS2",
TRUE ~ REG_TYPE)) %>%
mutate_if(is.factor, as.character)
col_names_animals <- colnames(animals.groupby)
# library(gdxrrw)
# igdx("d:/gams/win64/34.3")
cat("Export gdx: ",paste0(getwd(), "/gdx/animals_LEVL_converted.gdx") )
# write gdx: levl: value*WEIGHT
writegdx(dt = animals.groupby,
gdx = paste0(getwd(), "/gdx/animals_LEVL_converted.gdx"),
name = "DataOut",
valcol= "sum_Value",
uelcols= col_names_animals[!col_names_animals %in% "sum_Value"],
type="parameter")
}) #10.75s