Newer
Older
# raw table J: livestock
# col.codes.livestock.dt
# raw table K: production
# col.codes.anim_products.dt
# load raw data ----
raw.file <- paste0(get.data.dir(),"/rds","/fadn.raw.all.rds")
raw_data_test <- readRDS(file=raw.file) #82.42s
#read thw variables of a worksheet into R df
FADN_data_request_file <- "D:/data/fadn/lieferung_20210414/yang/FADN data request forms_2020_02_update - 20201212.xlsx"
FADN_data_request <- readxl::read_excel(FADN_data_request_file,
sheet = "Selection of variables",
skip = 2)
common.names.inExcel <- FADN_data_request$`COMMON name`
# raw_data_test <- copy(raw_data)
cols.names.fadn <- colnames(raw_data_test)
missing.names <- c()
for (common.name in common.names.inExcel){
if (!common.name %in% cols.names.fadn){
missing.names <- append(missing.names, common.name)
rm(common.names.inExcel,FADN_data_request_file, FADN_data_request)
missing.names <- unique(missing.names)
## add missing variables with 0 value
raw_data_test[,c(missing.names) := 0]
# load livestocks from raw data ----
cols.to.load = c("ID",col.codes.livestock.dt[!code.num=="",common.name])
# only average number of animals
fadn.info <- c("NUTS1","NUTS2","NUTS3","SYS02")
tmp.LOAD.raw <- copy(raw_data_test[,c("YEAR","COUNTRY",fadn.info,cols.to.load),with=FALSE])
# system.time({tmp.LOAD.raw %>% pivot_longer(!c("ID","YEAR","COUNTRY","NUTS1","NUTS2","NUTS3"),
# names_to = "variable",
# values_to = "value") %>% filter(value != 0)}) #88.76s
# setnames(tmp.LOAD.raw,c("load.YEAR","load.COUNTRY"),c("YEAR","COUNTRY"))
tmp.LOAD.raw.long <- melt.data.table(tmp.LOAD.raw,
id.vars = c("ID","YEAR","COUNTRY","NUTS1","NUTS2","NUTS3"))[value!=0]
# system.time({
# melt(tmp.LOAD.raw,
# id.vars = c("ID","YEAR","COUNTRY","NUTS1","NUTS2","NUTS3"))[value!=0]
# })#26.40
# system.time({
# melt(tmp.LOAD.raw,
# id.vars = c("ID","YEAR","COUNTRY","NUTS1","NUTS2","NUTS3"))[value!=0]
# })
rm(tmp.LOAD.raw)
# for depreciated variables (2013 and before that are not found in 2014 and after; end at _X)
system.time({
tmp.LOAD.raw.long[
grep("_X$",variable),
":="(
ANIM=gsub("^(.+?)_(.+?)(_.*)?$","\\1",variable),
VAR=gsub("^(.+?)_(.+?)(_.*)?$","\\2",variable)
)]
tmp.LOAD.raw.long[
!grep("_X$",variable),
":="(
ANIM=gsub("^(.+)_(.+)$","\\1",variable),
VAR=gsub("^(.+)_(.+)$","\\2",variable)
)]
})# 41.81
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
vars.to.keep = c("AN","ALU","ON","OV","CN","CV","PV",
"PN","SV","SN","FCV","FUV","TO","SRV","SRN",
"SSN","SSV","SUN","SUV","SYS02")
TABLE_J_RAW = data.table::dcast(tmp.LOAD.raw.long[VAR%in%vars.to.keep]
,COUNTRY+ID+YEAR+NUTS1+NUTS2+NUTS3+ANIM~VAR,
value.var = "value",fill=0)
TABLE_J.all <- TABLE_J_RAW
TABLE_J.all$NUTS0 <- TABLE_J.all$COUNTRY
rm(TABLE_J_RAW)
tmp1 = dcast(TABLE_J.all[ANIM%in%c("LBOV0","LBOVFAT"),
.(COUNTRY,ID,ANIM,YEAR,value=AN)],COUNTRY+ID+YEAR~ANIM,
fill=0)
tmp1[,":="(LBOV0.perc=LBOV0/(LBOV0+LBOVFAT),LBOVFAT.perc=LBOV0/(LBOV0+LBOVFAT))]
# tmp1[is.na(LBOV0.perc),LBOV0.perc:=0]
# tmp1[is.na(LBOVFAT.perc),LBOVFAT.perc:=0]
# tmp2 = merge(tmp1,TABLE_AB.all[,.(ID,NUTS0,NUTS1,NUTS2,NUTS3,SYS02)],by="ID")
tmp2 = merge(tmp1,TABLE_J.all[,.(ID,NUTS0,NUTS1,NUTS2,NUTS3,SYS02)], by="ID",allow.cartesian=TRUE)
library(Hmisc)
tmp3=rbindlist(use.names=T,list(
tmp2[,.(value=median(LBOV0.perc),TYPE="ID"),by=.(GEO=ID)],
tmp2[,.(value=wtd.quantile(LBOV0.perc,SYS02,0.5),TYPE="NUTS0"),by=.(GEO=NUTS0)],
tmp2[,.(value=wtd.quantile(LBOV0.perc,SYS02,0.5),TYPE="NUTS1"),by=.(GEO=NUTS1)],
tmp2[,.(value=wtd.quantile(LBOV0.perc,SYS02,0.5),TYPE="NUTS2"),by=.(GEO=NUTS2)],
tmp2[,.(value=wtd.quantile(LBOV0.perc,SYS02,0.5),TYPE="NUTS3"),by=.(GEO=NUTS3)]
))
#Get from NUTS2 the share for each farm
tmp4 = unique(merge(
unique(TABLE_J.all[ANIM%in%c("LBOV1"),.(COUNTRY,ID,YEAR)]),
TABLE_J.all[,.(ID,YEAR,NUTS0,NUTS1,NUTS2,NUTS3)],
by=c("ID","YEAR")
))[,.(ID,NUTS0,NUTS1,NUTS2,NUTS3)]
tmp5 = merge(
tmp4,
tmp3[TYPE=="ID",.(ID=as.numeric(GEO),LBOV0.perc=value)],
all.x=T,by="ID"
)
tmp6 = rbindlist(use.names=T,list(
tmp5[!is.na(LBOV0.perc)],
merge(
tmp5[is.na(LBOV0.perc),-"LBOV0.perc"],
tmp3[TYPE=="NUTS3",.(NUTS3=GEO,LBOV0.perc=value)],
all.x=T,by="NUTS3"
)
))
tmp6 = rbindlist(use.names=T,list(
tmp6[!is.na(LBOV0.perc)],
merge(
tmp6[is.na(LBOV0.perc),-"LBOV0.perc"],
tmp3[TYPE=="NUTS2",.(NUTS2=GEO,LBOV0.perc=value)],
all.x=T,by="NUTS2"
)
))
tmp6 = rbindlist(use.names=T,list(
tmp5[!is.na(LBOV0.perc)],
merge(
tmp5[is.na(LBOV0.perc),-"LBOV0.perc"],
tmp3[TYPE=="NUTS1",.(NUTS1=GEO,LBOV0.perc=value)],
all.x=T,by="NUTS1"
)
))
tmp6 = rbindlist(use.names=T,list(
tmp6[!is.na(LBOV0.perc)],
merge(
tmp6[is.na(LBOV0.perc),-"LBOV0.perc"],
tmp3[TYPE=="NUTS0",.(NUTS0=GEO,LBOV0.perc=value)],
all.x=T,by="NUTS0"
)
))
BOV1_PERC = tmp6[,.(LBOV0.perc=mean(LBOV0.perc)),by=ID]
# The definition of activities
ANIMALS_IFM_CAP.all = rbindlist(use.names = T,list(
#2014 and after
get.ifm_cap.animals("AN",2004:2018),
get.ifm_cap.animals("SN",2004:2018),
get.ifm_cap.animals("SV",2004:2018),
# get.ifm_cap.animals("SSN",2004:2018),# SSN not found
# get.ifm_cap.animals("SRV",2004:2018),# not found
# get.ifm_cap.animals("SUN",2004:2018),# not found
# get.ifm_cap.animals("SUV",2004:2018),# not found
get.ifm_cap.animals("PN",2004:2018),
get.ifm_cap.animals("PV",2004:2018),
get.ifm_cap.animals("ON",2004:2018),
get.ifm_cap.animals("OV",2004:2018),
get.ifm_cap.animals("CN",2004:2018),
get.ifm_cap.animals("CV",2004:2018)
))
rm(list=c("tmp1","tmp2","tmp3","tmp4","tmp5","tmp6"))
# setnames(ANIMALS_IFM_CAP.all,"FD","ID")
# str(ANIMALS_IFM_CAP.all)
# str(str_data$info)
# vars = c("ID","WEIGHT", "COUNTRY","YEAR","TF8","TF14","SIZ6","REGION","NUTS1","NUTS2","NUTS3", "ORGANIC")
ANIMALS_FADN <- ANIMALS_IFM_CAP.all %>% as.data.table() %>% mutate(ID=as.character(ID))
rm(list=c("ANIMALS_IFM_CAP.all", "raw_data_test"))
str_data <- readRDS(paste0(get.data.dir(),"/rds/str_dir/fadn.str.all.rds"))
str_data_info <- str_data$info
rm(list="str_data")
ANIMALS_FADN_ID_YEAR <- expand_grid(ANIMALS_FADN %>% select(variable,ANIM) %>% unique(),
str_data_info %>% select(ID,YEAR) %>% unique())
ANIMALS_FADN_ID_YEAR <- ANIMALS_FADN_ID_YEAR %>% as.data.table()
# ANIMALS_FADN_ID_YEAR is a subset of ANIMALS_FADN without column "value"????
# identical(ANIMALS_FADN %>% select(-value) %>% mutate(ID = as.factor(ID)), ANIMALS_FADN_ID_YEAR)
select_str_info <- str_data_info[,c("ID","WEIGHT", "COUNTRY","YEAR",
"TF8","TF14","SIZ6","REGION","NUTS1","NUTS2","NUTS3", "ORGANIC")]
# system.time({
#
# animal.dt <- right_join(ANIMALS_FADN_ID_YEAR,
# select_str_info)
#
# animal.dt <- left_join(animal.dt, ANIMALS_FADN)
#
# }) #216s
# system.time({
animal.dt <- ANIMALS_FADN_ID_YEAR[select_str_info, on = c("ID", "YEAR")]
animal.dt <- ANIMALS_FADN[animal.dt , on = c("variable", "ANIM", "ID", "YEAR")]
# })#78s
# all.equal(animal.dt1, animal.dt)