# group by different NUTS with YEAR, CROP/ANIM, VARIABLE,ORGANIC
fadn.filter <- function(data, group.by, type ) {
# filtered <- data %>%
# group_by({{group.by}},YEAR,{{type}},VARIABLE,ORGANIC) %>%
# summarise(sum_Value = sum(value2), .groups ="drop") %>%
# as.data.table() %>% rename(REGION = {{group.by}})
if (group.by == "EU"){
filtered <- data %>% filter(COUNTRY %in% EU_list) %>%
group_by(YEAR,.data[[type]],ORGANIC,VARIABLE) %>%
summarise(sum_Value = sum(value2), .groups ="drop") %>%
filtered <- data %>%
group_by(.data[[group.by]],
YEAR,
.data[[type]],
VARIABLE,
ORGANIC) %>%
summarise(sum_Value = sum(value2), .groups ="drop") %>%
as.data.table() %>%
rename(REGION = .data[[group.by]]) %>%
mutate(REG_TYPE = group.by)
convert.raw <- function(countries){
csv_file_names <- list.files(path = fadn.data.dir, pattern= "*.csv$")
if(countries == "all"){
csv_selected = csv_file_names
}else{
toMacth.countries = paste(countries,collapse="|")
csv_selected = grep(toMacth.countries, csv_file_names, value = TRUE)
}
cat("Create fadn.raw.rds files for: ", countries,"\n")
for (file in csv_selected){
# extract 4-7 char
year = substr(file, 4, 7)
countries = substr(file, 1, 3)
convert.to.fadn.raw.rds(
file.path = paste0(fadn.data.dir,file),
sepS = ",",
fadn.country = countries,
fadn.year = year
#keep.csv = T # copy csv file in csv.dir
)
load.raw <- function(countries){
if (countries == "all") {countries = EU_list}
raw.rds.avail <- get.available.fadn.raw.rds()[COUNTRY %in% countries ]
countries.avail <- unique( raw.rds.avail$COUNTRY)
load.fadn.raw.rds(countries = countries.avail,years = "all")
}
convert.str.crops <- function(countries){
# Convert FADN data, save the str data in path: ../output/restart/fadn/
before2013.json = "../r/fadntocapri/corrected.json.full/corrected.2013_before.json"
after2014.json = "../r/fadntocapri/corrected.json.full/corrected.2014_after.json"
#Check if the str data already exists
# extr.dirs = list.dirs(path = paste0(get.data.dir(),"/rds"), full.names = F, recursive = F)
# extr.dirs.full = paste0(rds.dir,extr.dirs)
# list.files(extr.dirs.full, pattern = paste0(fadn.countries,".rds") )
if ( "all" %in% countries) {
beforeyears = "before2013"
afteryears = "after2014"
# all countries and years 719.24s
# convert raw data to structured data ---
# before 2013 and 2013
convert.to.fadn.str.rds(countries,
beforeyears,
raw_str_map.file = before2013.json,
# after 2014 and 2014
convert.to.fadn.str.rds(countries,
afteryears,
raw_str_map.file = after2014.json,
beforeyears = c(2004:2013)
afteryears = c(2014:2018)
# before 2014
# only DEU 84s
# BEL and DEU 107.26s
for (country in countries ){
convert.to.fadn.str.rds(country,
beforeyears[i],
raw_str_map.file = after2014.json,
convert.to.fadn.str.rds(country,
afteryears[i],
raw_str_map.file = after2014.json,
}
## year specific translation from FADN to CAPRI code
load.str.crops <- function(countries ) {
# load crops str data
fadn.str.data <- load.fadn.str.rds("alex",countries,"all")
fadn.str.crops <- fadn.str.data$crops
get.ifm_cap.animals = function(column="AN", years.eff=2010:2013, data.cur=TABLE_J.all) {
#Livestock, number of animals
cols = c("ID","YEAR","ANIM",column)
tmp1 = data.table::dcast(data.cur[YEAR%in%years.eff,..cols],ID+YEAR~ANIM,value.var=column,fill=0)
tmp1 = merge(tmp1,BOV1_PERC,all.x=T,by="ID")[is.na(LBOV0.perc),LBOV0.perc:=0]
# setnames(tmp1,"ID","FD")
cols.used = c("LBOVFAT","LBOV0","LHEIFBRE","LHEIFFAT","LBOV1_2F","LCOWDAIR","LBUFDAIRPRS",
"LCOWBUFDAIR","LCOWOTH","LEWEBRE","LGOATBRE","LSHEPOTH","LGOATOTH","LSOWBRE",
"LPIGFAT","LPIGOTH","LPLTRBROYL","LPLTROTH","LHENSLAY","LEQD","LBOV1_2M","LBOV2","LRABBRE")
for(col.used in cols.used) {
if(!col.used%in%names(tmp1)){
warning(paste0("nCreating column ",col.used))
tmp1[,(col.used):=0]
}
}
#If LBOV0+LBOVFAT are not present and LBOV1 is present, calculate the share
tmp1[LBOV1>0 & LBOVFAT==0 & LBOV0==0,":="(LBOV0=LBOV0.perc*LBOV1,LBOVFAT=(1-LBOV0.perc)*LBOV1)]
YEAR,
variable=column,
CAMF = pmax(0.5*LBOVFAT),
CAFF = pmax(0.5*LBOVFAT),
CAMR = pmax(0,LBOV0-LHEIFBRE),
CAFR = pmin(LHEIFBRE,LBOV0),
HEIF = LHEIFFAT+pmax(0,LBOV1_2F-LHEIFBRE),
BULF = LBOV1_2M+LBOV2,
HEIR = LHEIFBRE+pmin(LBOV1_2F,LHEIFBRE),
DCOW = LCOWBUFDAIR+LCOWCUL+LCOWDAIR+LBUFDAIRPRS,
SCOW = LCOWOTH,
SHGM = LEWEBRE+ LGOATBRE,
SHGF = LSHEPOTH + LGOATOTH,
SOWS = LSOWBRE ,
PIGF = LPIGFAT + LPIGOTH,
POUF = LPLTRBROYL + LPLTROTH,
HENS = LHENSLAY ,
return(
melt(tmp2,id.vars = c("ID","YEAR","variable"),variable.name = "ANIM")[]
)