GitLab at IIASA

convert_data.R 20.8 KiB
Newer Older
Xinxin Yang's avatar
Xinxin Yang committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620




#' Imports a DG-AGRI csv into fadnUtils
#'
#' It first call the convert.to.fadn.raw.rds and then convert.to.fadn.str.rds
#'
#' @param file.path the full path of the file (the filename must be included)
#' @param raw.f the raw_str_map file to use. it must reside inside 'raw_str_maps; folder of the data.dir
#' @param sepS the separator of the csv files (by default ",")
#' @param fadn.year the year the csv files refers to (e.g. 2001)
#' @param fadn.country the three letter country code the csv files refers to (e.g. "ELL")
#' @param keep.csv if TRUE, copy the csv files; else do not copy
#'
#' @return NULL
#' @export
#'
#' @examples
import.fadn.csv <- function (file.path,
                             raw.f=NULL,
                             sepS=",",
                             fadn.year= NA,
                             fadn.country = NA,
                             keep.csv=F) {

  #if file exist
  if(!file.exists(file.path)) {
    cat(paste0("File ",file.path," does not exist. Exiting ...\n"))
    return(invisible(FALSE))
  }

  # check for fadnUtils.data.dir
  if(is.null(get.data.dir())) {
    cat("You have first to set the fadnUtils.data.dir using set.data.dir function. Exiting ....\n")
    return(FALSE)
  } else {
    data.dir = get.data.dir();
    csv.file = basename(file.path)
  }

  if(is.null(raw.f)) {
    cat("You have to give a raw_str_map. Exiting ....\n")
    return(FALSE)
  }

  if(convert.to.fadn.raw.rds(file.path,sepS,fadn.year,fadn.country,keep.csv)) {
    convert.to.fadn.str.rds(fadn.country,fadn.year,raw.f)
  } else {
    cat("Failed to import. Exiting ...\n")
    return(invisible(NULL))
  }



}



#' Gets a fadn.raw.csv (csv file from DG-AGRI) and transforms it accordingly to fadn.raw.rds
#'
#' It saves two files:
#'  - One that contain a wide format of the data, i.e. in tabular format that is identical to the csv data. This is uncompressed data.
#'  - One that holds the same information in compressed data. It is a list that contains $data.char and $data.num data.tables in long format. 0 values are removed and only the col.id is the index on both data.tables
#'
#' @param file.path the full path of the csv file (the filename must be included)
#' @param sepS the separator of the csv files (by default ",")
#' @param fadn.year the year the csv files refers to (e.g. 2001)
#' @param fadn.country the three letter country code the csv files refers to (e.g. "ELL")
#' @param keep.csv if TRUE, copy the csv files to the CSV directory; else do not copy
#'
#' @return Saves the fadn.raw.rds file and returns TRUE if everything goes well
#' @import data.table
#'
#' @export
#' @examples
convert.to.fadn.raw.rds <- function(file.path="",
                           sepS=",",
                           fadn.year= NA,
                           fadn.country = NA,
                           keep.csv = F,
                           col.id = "ID") {

  library(data.table)

  #if file exist
  if(!file.exists(file.path)) {
    cat(paste0("File ",file.path," does not exist. Exiting ...\n"))
    return(FALSE)
  }

  # check for fadnUtils.data.dir
  if(is.null(get.data.dir())) {
    cat("You have first to set the fadnUtils.data.dir using set.data.dir function. Exiting ....\n")
    return(FALSE)
  } else {
    data.dir = get.data.dir();
    csv.file = basename(file.path)
  }

  if(file.exists(paste0(data.dir,"/csv/",csv.file))) {cat("File exists. Overwriting ...\n")}

  #copy csv to data.dir/csv
  if(keep.csv) {
    print("      copying file")
    file.copy(file.path,paste0(data.dir,"/csv/",csv.file))
  }

  #convert to uncompressed rds and save
  print("      creating fadn.raw.rds")
  data.raw = data.table(read.csv(file.path,header = T, as.is = T))

  attr(data.raw,"original.file.path") <-file.path
  attr(data.raw,"fadn.year")<-fadn.year
  attr(data.raw,"fadn.country")<-fadn.country

  data.name  = paste0("fadn.raw.",fadn.year,".",fadn.country,".rds")

  saveRDS(data.raw,paste0(data.dir,"/rds/",data.name))


  #convert to compressed rds and save
  data.raw.classes = data.table(col.name=names(data.raw),col.class=sapply(data.raw,class))
  data.raw.compr = list()

  char.cols = c(col.id, data.raw.classes[col.class=="character",col.name])
  data.raw.compr$data.char = data.raw[,..char.cols]

  num.cols = c(col.id, data.raw.classes[!col.class=="character",col.name])
  data.raw.compr$data.num = melt(data.raw[,..num.cols],id.vars = col.id)[!value==0]

  attr(data.raw.compr,"original.file.path") <-file.path
  attr(data.raw.compr,"fadn.year")<-fadn.year
  attr(data.raw.compr,"fadn.country")<-fadn.country
  attr(data.raw.compr,"col.names")<-names(data.raw)
  attr(data.raw.compr,"col.id")<-col.id

  data.name  = paste0("fadn.raw.",fadn.year,".",fadn.country,".compressed.rds")
  saveRDS(data.raw.compr,paste0(data.dir,"/rds/",data.name))



  return(invisible(TRUE))

}



#' Converts an fadn.raw.rds file to fadn.str.rds file using a raw_str_map.json file
#'
#' The raw_str_map.json specification is as follows:
#'
#' {
#'    "id": { "COLUMN in every list member in RDS": "COLUMN IN CSV", ....},
#'    "info": { "COLUMN in info RDS": "COLUMN IN CSV", ....},
#'    "livestock": {}
#'    "crops": {
#'               "CROP NAME 1": {"description": "description of crop name", "columns": {"VARIABLE NAME": COLUMN IN CSV", ....}   },
#'               "CROP NAME 2": {"description": "description of crop name", "columns": {"VARIABLE NAME": COLUMN IN CSV", ....}   },
#'               ....
#'    }
#' }
#'
#'
#' The structure of the str.dir:
#'  - A data.dir can hold more than one extractions.
#'  - Each extraction has a short name (20 or less characters, whitespace is not allowed)
#'  - Each extraction is stored in the data.dir/rds/<extraction_name>
#'  - That folder contains the following files:
#'       + raw_str_map.json: the raw_str_map
#'       + fadn.str.<4-digit YEAR>.<3-letter COUNTRY>.rds: the extracted data
#'
#' Notes:
#' 1) The computed RDS file contains a list structure with the following keys: info, costs, livestock-animals and crops
#'    All are data.tables. For all of them, the first columns are those that are contained in the "id" object
#'    "info" and "costs" are in table format, i.e. each farm is one row and data is on columns, as defined in the
#'        related raw_str_map.json file.
#'    "crops" and "livestock-animals" are in wide data format (https://tidyr.tidyverse.org/), where one farm lies accross many rows, and each
#'        row is a farm-crop-variableName-value combination
#'
#' 2) In $id, $info and $costs, "COLUMN IN CSV" can have two forms
#'     i) a single column name in the fadn.raw csv file or a combination, e.g. "K120SA+K120FC+K120FU+K120CV-K120BV"
#'     ii) the form of an object {"source": "the column in the csv", "description": "a description of what this column is about"}
#'
#' 3) We attach certain attributes that are useful for identifying informations:
#'     i) In $info and $costs, the attribute "column description" provide information of the formula and the description of each column
#'     ii) In $crops and $livestock-animals, the attribute "$crops.descriptions" and "$livestock.descriptions", provide the description of each CROP contained there
#'     iii) In $crops and $ the attribute "$column.formulas" provide the formulas used in order to derive the VALUE
#'
#'
#'
#'
#' @param fadn.country string with the country to extract the str data
#' @param fadn.year the year to extract the structured data
#' @param raw_str_map.file the full path to the raw_str_map file.
#' @param str.short_name the short name of the str data. No spaces and text up to 20 characters
#' @param DEBUG if TRUE, prints more details on the conversion process
#'
#' @return Saves the rds.str.fadn and returns TRUE if everything goes well
#'
#' @export
#'
#' @examples
convert.to.fadn.str.rds <-function(fadn.country = NA,
                                   fadn.year= NA,
                                   raw_str_map.file=NULL,
                                   force_external_raw_str_map=FALSE,
                                   str.name = NULL,
                                   DEBUG=F
                                   )  {

  #check if str.short_name abides to specification
  if(nchar(str.name)>20){
    cat("str.name more should be 20 character and less. Exiting ....\n")
    return(invisible(FALSE))
  }
  if (grepl("\\s",str.name)) {
    cat("str.name should not contain any kind of whitespace. Exiting ....\n")
    return(invisible(FALSE))
  }


  # check for fadnUtils.data.dir
  if(is.null(get.data.dir())) {
    cat("You have first to set the fadnUtils.data.dir using set.data.dir function. Exiting ....\n")
    return(invisible(FALSE))
  }


  #if data.dir is a proper dat.dir
  if(!check.data.dir.structure()) {
    cat("data.dir does not have a proper structure. Exiting ....\n")
    return(invisible(FALSE))

  } else {
    data.dir = get.data.dir();
    rds.dir = paste0(data.dir,"/rds/")
    str.dir = paste0(rds.dir,"/",str.name,"/")

  }


  #create/get the raw_str_map.json file
  if(is.null(raw_str_map.file) & !file.exists(paste0(str.dir,"raw_str_map.json"))) {
    cat("either provide a raw_str_map or an existing extraction dir Exiting ....\n")
    return(invisible(FALSE))
  }



  #create/get the raw_str_map.json file ----

  ##case a
  if(!is.null(raw_str_map.file) & !file.exists(paste0(str.dir,"raw_str_map.json"))) {
    dir.create(str.dir)
    file.copy(raw_str_map.file,paste0(str.dir,"raw_str_map.json"))#copy the file
    cat("\n", raw_str_map.file, " copied to ", paste0(str.dir,"raw_str_map.json\n"))
  }

  ##case b
  if(!is.null(raw_str_map.file) & file.exists(paste0(str.dir,"raw_str_map.json")) & force_external_raw_str_map==T) {
    file.copy(raw_str_map.file,paste0(str.dir,"raw_str_map.json"), overwrite = TRUE)#copy the file
    cat("\n", raw_str_map.file, " copied to ", paste0(str.dir,"raw_str_map.json\n"))
  }

  ##case c
  if(!is.null(raw_str_map.file) & file.exists(paste0(str.dir,"raw_str_map.json")) & force_external_raw_str_map==F) {
    cat("Ignoring the provided raw_str_map.json fie. The conversion will use the existing raw_str_map from the extraction_dir");
  }

  raw_str_map.file = paste0(str.dir,"raw_str_map.json")





  # read raw.rds file ----
  #check if fadn.raw.rds exist
  fadn.raw.rds.filename = paste0(rds.dir,"fadn.raw.",fadn.year,".",fadn.country,".rds")

  if(!file.exists(fadn.raw.rds.filename)) {
    cat("You have first to create a fadn.raw.rds file for the year and country (from a DG-AGRI csv file). Exiting ....\n")
    return(FALSE)
  }
  fadn.raw.rds = readRDS(fadn.raw.rds.filename)


  library("jsonlite")


  #read raw_str_map file to a list ----
  raw_str_map = fromJSON(paste(readLines(raw_str_map.file), collapse="\n"))


  #create empty return list
  data.return = list()


  attach(fadn.raw.rds) #o that eval works more efficiently

  # .......................................................
  #what id variables will be availble to all DT?
  #create id ----
  print("Doing id ...")

  id.vars.list = take.raw_str_map.columns(raw_str_map$id)
  id.dt = data.table()
  id.dt.descriptions = data.frame(COLUMN=character(), FORMULA=character(), DESCRIPTION = character());

  #intersting links
  #
  # https://stackoverflow.com/questions/28327738/evaluate-expression-in-r-data-table




  start.time <- Sys.time()
  for(k in names(id.vars.list)) {

    if(DEBUG) { print(paste0("     doing  ", k, " = ", id.vars.list[[k]][["SOURCE"]])); }

    #approach 1: 19 sec
    # f <- function(e, .SD) eval(parse(text=e[1]), envir=.SD)
    # id.dt.cur = fadn.raw.rds[,list(
    #   k=f(id.vars.list[[k]][["SOURCE"]],
    #       .SD)
    # )]
    # id.dt.cur = fadn.raw.rds[,list(k=f(id.vars.list[[k]][["SOURCE"]],.SD))]

    #approach 0: 10 sec
    #id.dt.cur = fadn.raw.rds[,list(k=eval(parse(text=id.vars.list[[k]][["SOURCE"]])))]

    #approach 2: 0.3 sec
    expr = eval(parse(text=id.vars.list[[k]][["SOURCE"]]))
    id.dt.cur = fadn.raw.rds[,list(k=expr)]



    setnames(id.dt.cur,k)

    id.dt=cbind(id.dt,id.dt.cur)

    id.dt.descriptions = rbind(id.dt.descriptions,
                               data.frame(COLUMN=k,
                                          FORMULA=id.vars.list[[k]][["SOURCE"]],
                                          DESCRIPTION = id.vars.list[[k]][["DESCRIPTION"]])
    )

  }
  attr(id.dt,"column.descriptions") <- id.dt.descriptions;
  end.time <- Sys.time()
  time.taken <- end.time - start.time
  time.taken



  # .......................................................
  #create info ----
  print("Doing info ...")

  info = copy(id.dt)
  info.descriptions = data.frame(COLUMN=character(), FORMULA=character(), DESCRIPTION = character());


  ##now for each info key, add the column
  info.map = take.raw_str_map.columns(raw_str_map$info)
  for(k in names(info.map)) {

    if(DEBUG) { print(paste0("     doing  ", k, " = ", info.map[[k]][["SOURCE"]])); }

    #info.cur = fadn.raw.rds[,list(k=eval(parse(text=info.map[[k]][["SOURCE"]])))]

    expr = eval(parse(text=info.map[[k]][["SOURCE"]]))
    info.cur = fadn.raw.rds[,list(k=expr)]


      #fadn.raw.rds[,list(k=eval(parse(text=info.map[[k]])))]
    setnames(info.cur,names(info.cur),k)
    info=cbind(info,info.cur)

    info.descriptions = rbind(info.descriptions,
                               data.frame(COLUMN=k,
                                          FORMULA=info.map[[k]][["SOURCE"]],
                                          DESCRIPTION = info.map[[k]][["DESCRIPTION"]])
    )
  }

  attr(info,"column.descriptions") <- rbind( attr(info,"column.descriptions"), info.descriptions )

  data.return$info = info;




  # # .......................................................
  # #create livestock-animals ----
  #
  # if(DEBUG){cat("\n")}
  # print("Doing livestock-animals ...")
  #
  # ##now load the map
  # lvst.animals.map = raw_str_map$livestock$animals
  #
  # ##if not empty
  # if(length(names(lvst.animals.map))>0) {
  #   lvst.animals.id = copy(id.dt)
  #   lvst.animals.descriptions = data.frame( LIVESTOCK=character(), DESCRIPTION=character() );
  #   lvst.animals.column.formulas = data.frame( LIVESTOCK=character(), COLUMN=character(), FORMULA=character());
  #
  #   lvst.animals = NULL #this is the DT to save the data
  #
  #
  #   for(lvst.animal.key in names(lvst.animals.map)) { #loop each lvst.animals name (e.g. DCOW, SCOW, etc.)
  #
  #     if(DEBUG) { print(paste0("  ", lvst.animal.key)); } else { cat(".")}
  #
  #     lvst.animal.key.map = lvst.animals.map[[lvst.animal.key]]
  #
  #     lvst.animals.descriptions = rbind(lvst.animals.descriptions,
  #                                       data.frame( LIVESTOCK=lvst.animal.key,
  #                                                   DESCRIPTION=lvst.animal.key.map[["description"]] ) )
  #
  #     for(k in names(lvst.animal.key.map[["columns"]])) { #loop each key within the animal name
  #
  #       cmd = parse(text=(lvst.animal.key.map[["columns"]][[k]]))
  #       if(DEBUG) { print(paste0("     running ",k," = ", cmd)); }
  #
  #       #lvst.animals.cur = fadn.raw.rds[,list(k=eval(parse(text=(lvst.animal.key.map[["columns"]][[k]]) )))]
  #       expr = eval(parse(text=(lvst.animal.key.map[["columns"]][[k]]) ))
  #       lvst.animals.cur = fadn.raw.rds[,list(k=expr)]
  #
  #
  #       setnames(lvst.animals.cur,names(lvst.animals.cur),"VALUE")
  #
  #       lvst.animals.column.formulas = rbind(lvst.animals.column.formulas,
  #                                            data.frame(LIVESTOCK= lvst.animal.key, COLUMN=k , FORMULA=lvst.animal.key.map[["columns"]][[k]])
  #       );
  #
  #       if(is.null(lvst.animals)) {
  #         lvst.animals = cbind(lvst.animals.id,LIVESTOCK=lvst.animal.key,VARIABLE=k,lvst.animals.cur)
  #       }
  #       else{
  #         lvst.animals=rbind(lvst.animals[VALUE!=0],
  #                            cbind(lvst.animals.id,LIVESTOCK=lvst.animal.key,VARIABLE=k,lvst.animals.cur)
  #         )
  #       }
  #
  #     }
  #
  #   }
  #
  #   lvst.animals$VARIABLE = factor(lvst.animals$VARIABLE)
  #   attr(lvst.animals,"column.formulas") <- lvst.animals.column.formulas
  #   attr(lvst.animals,"livestock.descriptions") <- lvst.animals.descriptions
  #   data.return$lvst$animals = lvst.animals[VALUE!=0];
  #
  #   if(!DEBUG){cat("\n")}
  #
  # }
  #
  #
  #
  # # .......................................................
  # #create livestock-products ----
  #
  # if(DEBUG){cat("\n")}
  # print("Doing livestock-products ...")
  #
  # ##now load the map
  # lvst.animals.map = raw_str_map$livestock$products
  #
  # ##if not empty
  # if(length(names(lvst.animals.map))>0) {
  #   lvst.animals.id = copy(id.dt)
  #   lvst.animals.descriptions = data.frame( LIVESTOCK=character(), DESCRIPTION=character() );
  #   lvst.animals.column.formulas = data.frame( LIVESTOCK=character(), COLUMN=character(), FORMULA=character());
  #
  #   lvst.animals = NULL #this is the DT to save the data
  #
  #
  #   for(lvst.animal.key in names(lvst.animals.map)) { #loop each lvst.animals name (e.g. DCOW, SCOW, etc.)
  #
  #     if(DEBUG) { print(paste0("  ", lvst.animal.key)); } else { cat(".")}
  #
  #     lvst.animal.key.map = lvst.animals.map[[lvst.animal.key]]
  #
  #     lvst.animals.descriptions = rbind(lvst.animals.descriptions,
  #                                       data.frame( LIVESTOCK=lvst.animal.key,
  #                                                   DESCRIPTION=lvst.animal.key.map[["description"]] ) )
  #
  #     for(k in names(lvst.animal.key.map[["columns"]])) { #loop each key within the animal name
  #
  #       cmd = parse(text=(lvst.animal.key.map[["columns"]][[k]]))
  #       if(DEBUG) { print(paste0("     running ",k," = ", cmd)); }
  #
  #       #lvst.animals.cur = fadn.raw.rds[,list(k=eval(parse(text=(lvst.animal.key.map[["columns"]][[k]]) )))]
  #       expr = eval(parse(text=(lvst.animal.key.map[["columns"]][[k]]) ))
  #       lvst.animals.cur = fadn.raw.rds[,list(k=expr)]
  #
  #
  #       setnames(lvst.animals.cur,names(lvst.animals.cur),"VALUE")
  #
  #       lvst.animals.column.formulas = rbind(lvst.animals.column.formulas,
  #                                            data.frame(LIVESTOCK= lvst.animal.key, COLUMN=k , FORMULA=lvst.animal.key.map[["columns"]][[k]])
  #       );
  #
  #       if(is.null(lvst.animals)) {
  #         lvst.animals = cbind(lvst.animals.id,LIVESTOCK=lvst.animal.key,VARIABLE=k,lvst.animals.cur)
  #       }
  #       else{
  #         lvst.animals=rbind(lvst.animals[VALUE!=0],
  #                            cbind(lvst.animals.id,LIVESTOCK=lvst.animal.key,VARIABLE=k,lvst.animals.cur)
  #         )
  #       }
  #
  #     }
  #
  #   }
  #
  #   lvst.animals$VARIABLE = factor(lvst.animals$VARIABLE)
  #   attr(lvst.animals,"column.formulas") <- lvst.animals.column.formulas
  #   attr(lvst.animals,"livestock.descriptions") <- lvst.animals.descriptions
  #   data.return$lvst$products = lvst.animals[VALUE!=0];
  #
  #   if(!DEBUG){cat("\n")}
  #
  # }


  # .......................................................
  #create crops ----

  print("Doing crops ...")

  ##now load the map
  crops.map = raw_str_map$crops

  ##if not empty
  if(length(names(crops.map))>0) {
    crops.id = copy(id.dt)
    crops.descriptions = data.frame( CROP=character(), DESCRIPTION=character() );
    crops.column.formulas = data.frame( CROP=character(), COLUMN=character(), FORMULA=character());

    crops = NULL #this is the DT to save the data



    for(crop.key in names(crops.map)) { #loop each crop name (e.g. DWHE, BARL, etc.)

      if(DEBUG) { print(paste0("  ", crop.key)); } else { cat(".")}

      crop.key.map = crops.map[[crop.key]]

      crops.descriptions = rbind(crops.descriptions, data.frame( CROP=crop.key, DESCRIPTION=crop.key.map[["description"]] ) )

      for(k in names(crop.key.map[["columns"]])) { #loop each key within the crop name

        cmd = parse(text=(crop.key.map[["columns"]][[k]]))
        if(DEBUG) { print(paste0("     running ",k," = ", cmd)); }

        #crops.cur = fadn.raw.rds[,list(k=eval(parse(text=(crop.key.map[["columns"]][[k]]) )))]
        expr = eval(parse(text=(crop.key.map[["columns"]][[k]]) ))
        crops.cur = fadn.raw.rds[,list(k=expr)]


        setnames(crops.cur,names(crops.cur),"VALUE")

        crops.column.formulas = rbindlist(
          list(crops.column.formulas,
               data.frame(CROP= crop.key, COLUMN=k , FORMULA=crop.key.map[["columns"]][[k]])
          )
        );

        if(is.null(crops)) {
          crops = cbind(crops.id,CROP=crop.key,VARIABLE=k,crops.cur)
          }
        else{
          crops=rbind(crops[VALUE!=0],
                      cbind(crops.id,CROP=crop.key,VARIABLE=k,crops.cur)
          )
        }

      }

    }

    crops$VARIABLE = factor(crops$VARIABLE)
    attr(crops,"column.formulas") <- crops.column.formulas
    attr(crops,"crops.descriptions") <- crops.descriptions
    data.return$crops = crops[VALUE!=0];

  }
  cat("\n")



  detach(fadn.raw.rds)




  # .......................................................
  #save and return ----

  data.name  = paste0("fadn.str.",fadn.year,".",fadn.country,".rds")

  if(file.exists(data.name)) {cat("Data exists. Overwriting ...\n")}

  saveRDS(data.return,paste0(rds.dir,str.name,"/",data.name))

  #copy the rds

  return(invisible(TRUE))



}