<!-- README.md is generated from README.Rmd. Please edit that file -->
Develop by Dimitrios Kremmydas (JRC) and Xinxin Yang (THÜNEN)
The fadnUtils package facilitates the efficient handling of FADN data within the R language framework. Furthermore, the package is targeted for use within the JRC D.4 context. This means that there is a specific temporal pattern of how a user interacts with the package (see Figure plot). 
More specifically, after a request for FADN data from DG-AGRI, this data is delivered to JRC D.4 in csv format.
You can install the development version from Thuenen or IIASA Gitlab with:
``` r
# Thuenen gitlab
devtools::install_git("https://git-dmz.thuenen.de/mindstep/fadnutilspackages", force = TRUE)
# IIASA gitlab
devtools::install_git("https://gitlab.iiasa.ac.at/mind-step/fadnutilspackage")
```
Then the Related R packages can be installed.
requiredPackages = c('fadnUtils','data.table', 'devtools','jsonlite', 'ggplot2')
for(p in requiredPackages){
if(!require(p,character.only = TRUE)) install.packages(p)
library(p,character.only = TRUE)
}
```
## Loading required package: fadnUtils
## fadnUtils is loaded.
## Loading required package: data.table
## Loading required package: devtools
## Loading required package: usethis
## Loading required package: jsonlite
## Loading required package: ggplot2
After loaded the packages, you will have a functional R package on your computer. Then, we will talk about using your package online.
1. Create a working directory
- a user-defined data directory
2. Import CSV FADN data
- convert the csv data into raw r-data
- convert raw r-data into str r-data
3. Load r-data and structured r-data
4. Perform analysis
Frist, User sets a working directory. Make sure the relative path stays within `CurrentProjectDirectory`.
``` r
# using a local directory
CurrentProjectDirectory = "D:/public/yang/MIND_STEP/New_test_fadnUtils"
create.data.dir(folder.path = CurrentProjectDirectory)
```
## This is already a data.dir structure. Doing nothing.
``` r
set.data.dir(CurrentProjectDirectory)
get.data.dir()
```
We request FADN data from DG-AGRI, which is delivered to us in csv format. In order to work efficiently with R, we should convert the csv-data to an r friendly format, this step is done with help of a human-readable file, called `raw_str_map.file`. Both files are necessary. `inst/examples` is the folder for use cases that contain fadnUtils package examples and json files.
1. FADN data in csv format: the data for loading
2. A json file for extracting the variables
### Folder Structure
A working directory is specified arbitrarily by the user. This structure helps data management and maintenance. The directory looks like this:
CurrentProjectDirectory/
+-- csv
+-- fadnUtils.metadata.json
+-- rds
\-- spool
\-- readme.txt
```
- csv: CSV files are stored here
- fadnUtils.metadata.json: containing the mapping from the fadn.raw.rds to the fadn.str.rds data
- rds: placing r-data in the "rds" directory
- spool: keeping related files
First, we will import the data into an R-friendly format using the fadnUtils package.
### Convert the csv data into raw r-data
The raw data will be added to a `rds` directory. We use a convenient function from this package to convert the csv file into raw r-data.
fadn.data.dir <- "D:/public/data/fadn/lieferung_20210414/csv/"
fadn.year = 2009
#keep.csv = T # copy csv file in csv.dir
## File D:/public/data/fadn/lieferung_20210414/csv/BEL2009.csv does not exist. Exiting ...
## [1] FALSE
At any time, we can check for the current data dir, what csv files (countries, year) are loaded.
show.data.dir.contents()
```
### Convert raw r-data into structured r-data
Then, We convert raw data into structured data. Broadly, there are 3 steps to including data in an R package:
1. setting a structured data in the `structured` directory,
2. checking the `raw_str_map.file` that all variables can be converted.
3. converting the structured data successfully into `structured` directory.
#### Set a `structured` directory for saving the structured data
rds.dir = paste0(get.data.dir(),"/rds/")
# set a structured name for for saving the structured r-data in rds.dir
new.str.name = "test"
# set a extraction_dir
dir.create(paste0(rds.dir, new.str.name))
new.extraction.dir = paste0(rds.dir, new.str.name)
```
#### Check the variables in the `raw_str_map.file`
Before conversion it is recommended to use `check.column()` method, ensuring that all variables in the`raw_str_map.file` can be converted.
``` r
# a json file
jsonfile = "D:/public/yang/MIND_STEP/2014_after_copy.json",
# write a new json file without unmatched variables
rewrite_json = T,
# save the new json in extraction_dir
extraction_dir = new.extraction.dir)
```
#### Convert the raw data into structured r-data using the checked json file
Finally, We can convert a raw r-data to str r-data using a external json file. For more details on converting in fadnUtils packages, `see USE_CASE.R`.
``` r
convert.to.fadn.str.rds(fadn.country = "BEL",
fadn.year = 2009,
str.name = new.str.name # extraction_dir
)
convert.to.fadn.str.rds(fadn.country = "BEL",
fadn.year = 2009,
raw_str_map.file = "D:/public/yang/MIND_STEP/new_sample/test01/raw_str_map.json", # a external json file
str.name = new.str.name, # extraction_dir
force_external_raw_str_map = T,
DEBUG = F
)
```
- `fadn.raw.2009.BEL.rds`: raw r-data for country "BEL" and year "2009"
- `test`: extraction\_dir for saving the structured r-data and extracting json file
- `fadn.str.2009.BEL.rds`: structured s-data for for country of "BEL" and year of "2009"
- `raw_str_map.json`: default json file
- `rewrite_2014_after_copy.json`: modified json file after checking the variables