GitLab at IIASA

FarmDynR.R 27 KiB
Newer Older
Hugo Scherer's avatar
Hugo Scherer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
# FarmDynR.R ----
#
# Copyright (c) 2022 Hugo Scherer - Wageningen Economic Research
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.


## Modes ----
#' Retrieve mode of vector
#'
#' This function returns the mode of a vector. If the vector contains a character or factor, the most common character/factor is returned. Numbers written as characters will be compatible with non-character numbers (i.e. doubles/numeric), but the function returns a character.
#'
#' @param x vector from which to retrieve the mode from.
#' @return same class as 'x'.
#' @examples
#' Modes(x = c(1, 1, 3, 0, 2, 4, 2, 1, 5, 2, 1))
#' Modes(x = c('a','b', 'c', 'a', 'c', 'a'))
#' Modes(x = c('a', 2, 'x', 7895, 1, '2', 't', 2, 1))
#' @seealso [tabulate()]
#' @export Modes
Modes <- function(x) { # Function found on StackOverflow made by Ken Williams and expanded by digEmAll
  ux <- unique(x)
  tab <- tabulate(match(x, ux))
  ux[tab == max(tab)] # Takes the highest incidence value
}


## gdxbinwider ----
#' Join BIN data together, make joined dataset wider, and group by a mapping
#'
#' @description
#' The `gdxbinwider()` function takes in a GDX file with BIN data as parameters p_farmData_NL and p_farmData2GUI, and a mapping as a set.
#' Then the data is widened, and the output is a tibble.
#'
#' @param filename Name of the GDX file with BIN data and mappings.
#' @param BINDir Directory where the FADN data is located.
#' @param gdxmap Name of the set in the GDX file that contains the mapping (e.g. Regs2BINID)
#' @param mapping Column name of the characteristic/variable to be grouped by (e.g. "Regions" or "Regs")
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' gdxbinwider(datafile, BINDir, 'map2binid', 'mapping')
#' @seealso
#' \itemize{
#' \item{\code{\link[gdxrrw]{rgdx.param}}}{Load GDX parameters}
#' \item{\code{\link[gdxrrw]{rgdx.set}}}{Load GDX sets}
#' \item{\code{\link[tidyr]{pivot_wider}}}{Make dataframes wider}
#'  }
#' @export gdxbinwider
gdxbinwider <- function(filename, BINDir, gdxmap, mapping){

  if ('BINDir' %in% ls(envir = .GlobalEnv) & missing(BINDir)) { # Checks if BINDir is in Global Environment and uses it
    BINDir <- get('BINDir', envir = .GlobalEnv)
  } else {
    BINDir
  }


fd2guicolnames <- c("all_binid", "item1", "item2", "value")

fdnlcolnames <- c("all_binid", "year", "item1", "value")

fd2gui <- (gdxrrw::rgdx.param(file.path(BINDir, filename), "p_farmData2GUI", names=fd2guicolnames, compress=FALSE, ts=FALSE,
                                   squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE))

fdnl <- (gdxrrw::rgdx.param(file.path(BINDir, filename), "p_farmData_NL", names=fdnlcolnames, compress=FALSE, ts=FALSE,
                                 squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE))

#TODO Make gdxmapping compatible with multiple mappings, with lapply? for loop?
# first idea: gdxmapping[] <- lapply(gdxmapping, rgdx.set(...)); gdxmapping <- list(), for i in gdxmap...

gdxmapping <- (gdxrrw::rgdx.set(file.path(BINDir,filename), gdxmap, compress=FALSE, ts=FALSE,
                                     useDomInfo = TRUE, check.names = TRUE))

# Pick entries for non-numerical globals (1.6e+303 is code for numerical globals).

dummies <- fd2gui[which(fd2gui$all_binid=="dummy"),]

nonnumdummies <- dummies[dummies$value != 1.6e+303,]

# Separation of dummy from fd2gui

fd2gui <- fd2gui[which(fd2gui$all_binid!="dummy"),]

# Widening of the data for better and easier viewing and handling

fd2gui <- fd2gui %>%
  tidyr::pivot_wider(id_cols = "all_binid", names_from = c("item1", "item2"), values_from = "value", names_sep = "%")


fdnl <- fdnl %>%
  tidyr::pivot_wider(id_cols = c("all_binid", "year"), names_from = c("item1"), values_from = "value", names_sep = "%")

# Since subsetting with !duplicated() is done following the data order, reorder the data to start from youngest to oldest
# Result: all_binids are preserved for youngest years (2020, 2019...) and removed from oldest years (2013, 2014...)

fdnl <- fdnl[order(-as.numeric(fdnl$year)),]

fdnl <- fdnl[!duplicated(fdnl$all_binid),]

# Note: Some of the Weights appear in 2019 (n-1), but not 2020 (n = earliest data year), leading to NAs later on. Make sure at least the latest year has weights.

# Keep list of variables that are NOT numeric, BUT binary or other variables with other meanings.

tokeep <- c(paste("global", nonnumdummies$item2, sep = "%"), "global%soilTypeFirm", "global%derogatie")

# Finding index of global to keep only NON-numerical values based on "tokeep"

keepmatch <- match(tokeep, colnames(fd2gui))

# Making these factors
fd2gui[keepmatch] <- lapply(fd2gui[keepmatch], as.factor)


# Joining all data together

fdnl2gui <- dplyr::left_join(fd2gui, fdnl[,c('all_binid', 'Weight')], by='all_binid')

fdnl2gui[] <- lapply(fdnl2gui, function(x) if(is.factor(x)) as.factor(x) else x)

map2gui <- dplyr::right_join(fdnl2gui, gdxmapping, by='all_binid')

map2gui <- map2gui %>% dplyr::group_by(dplyr::across(dplyr::all_of({{ mapping }})))

return(map2gui)
}


## gdxreshape ----
#' Reshape from wide to long and save to GDX
#'
#' @description
#' `gdxreshape()` formats the data to be saved in GDX into long format. It is imported from the gdxrrw package with a few improvements for performance and usability, since there is a risk of it being removed from the gdxrrw package in the future.
#' We would like to thank the R GAMS team for this useful function.
#'
#' @param inDF wide dataframe.
#' @param symDim wide dataframe.
#' @param symName wide dataframe.
#' @param tName wide dataframe.
#' @param gdxName wide dataframe.
#' @param setsToo wide dataframe.
#' @param order wide dataframe.
#' @param setNames wide dataframe.
#'
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' gdxbinwider(datafile, BINDir, 'map2binid', 'mapping')
#' @seealso
#' \itemize{
#' \item{\code{\link[gdxrrw]{wgdx]}}}{Write R data to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.lst]}}}{Write multiple symbols to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.reshape]}}}{Write multiple symbols to GDX}
#' \item{\code{\link[tidyr]{pivot_longer]}}}{Make dataframes longer}
#' }
#' @export gdxreshape
gdxreshape <- function (inDF, symDim, symName=NULL, tName="time",
                        gdxName=NULL, setsToo=TRUE, order=NULL,
                        setNames=NULL) {
  # Function based on gdxrrw::wgdx.reshape of the gdxrrw package, modified for performance and usability.

  nCols <- ncol(inDF)
  timeIdx <- symDim                     # default index position for time aggregate
  if (is.null(order)) {
    idCols <- 1:(symDim-1)

    inDF[idCols] <- lapply(inDF[idCols], as.factor)

    outDF <- (tidyr::pivot_longer(inDF, cols=-dplyr::all_of(idCols)))
  }
  else if ((! is.vector(order)) || (symDim != length(order))) {
    stop ("specified order must be a vector of length symDim")
  }
  else {
    timeIdx <- -1
    if (is.character(order)) {
      stop ("order must be numeric for now")
    }
    else if (! is.numeric(order)) {
      stop ("optional order vector must be numeric or character")
    }

    idCols <- 1:(symDim-1)                                   # for k in 1:symDim
    if (any(duplicated(order))) {
      stop ('duplicate entry in order vector: nonsense')
    }

    if ((symDim-1) != sum(order>0)) {
      stop ('order vector must specify symDim-1 ID columns')
    }
    if (all(order>0)) {
      stop ('order vector must have a non-positive entry to specify the "time" index')
    }

    timeIdx <- match(0, order)

    oo <- c(idCols,(1:nCols)[-idCols])
    df2 <- inDF[oo]
    idCols <- 1:(symDim-1)

    df2[idCols] <- lapply(df2[idCols], factor)

    if (symDim == timeIdx) {     # no need to re-order after reshaping
      outDF <- tidyr::pivot_longer(df2, cols=-dplyr::all_of(idCols))
    }
    else {
      df3 <- tidyr::pivot_longer(df2, cols=-dplyr::all_of(idCols))
      oo <- vector(mode="integer",length=symDim+1)

      oo[1:(timeIdx-1)] = 1:(timeIdx-1)

      oo[timeIdx] = symDim

      oo[(timeIdx+1):symDim] = (timeIdx+1):symDim-1

      oo[symDim+1] = symDim+1
      outDF <- (df3[oo])
    }
  }
  outDF$name <- as.factor(outDF$name)
  if (is.null(symName)) {
    symName <- attr(inDF, "symName", exact=TRUE)
  }
  if (! is.character(symName)) {
    stop ("symName must be a string")
  }
  attr(outDF,"symName") <- symName
  symText <- attr(inDF, "ts", exact=TRUE)
  if (is.character(symText)) {
    attr(outDF,"ts") <- symText
  }
  if (is.character(tName)) {
    names(outDF)[timeIdx] <- tName
  }
  else {
    names(outDF)[timeIdx] <- 'time'
  }
  names(outDF)[symDim+1] <- "value"
  # str(outDF)
  if (setsToo) {
    ## write index sets first, then symName
    outLst <- list()

    length(outLst) <- symDim + 1
    setNamesLen <- 0
    if (! is.null(setNames)) {
      if (! is.character(setNames)) {
        stop ("setNames must be a string or string vector")
      }
      else if (! is.vector(setNames)) {
        stop ("setNames must be a string or string vector")
      }
      else {
        ## guard against zero-length vector
        setNamesLen <- length(setNames)
      }
    }
    kk <- 0

    for (i in 1:symDim) {
      lvls <- levels(as.factor(outDF[[i]]))
      outLst[[i]] <- list(name=names(outDF)[[i]], type='set', uels=c(list(lvls)))
      if (setNamesLen > 0) {            # tack on the next set text
        kk <- kk + 1
        outLst[[i]]$ts <- setNames[[kk]]
        if (kk >= setNamesLen)
          kk <- 0
      }
    }
    outLst[[symDim+1]] <- (outDF)

    if (is.character(gdxName)) {
      gdxrrw::wgdx.lst(gdxName,outLst)
    }
    else {
      return(outLst)
    }
  }
  else {
    if (is.character(gdxName)) {
      gdxrrw::wgdx.lst(gdxName,outDF)
    }
    else {
      return(list(outDF))
    }
  }
} # gdxreshape


## groupstats ----
#' Generate descriptive statistics and save to GDX
#'
#' @description
#' `groupstats()` returns descriptive statistics per group based on the mapping given. For example, if your mapping
#' is 'regions', this function will give you the weighted mean, median, min, max, number of observations per variable for each
#' region based on the individual farm data. When `writegdx` is `TRUE`, it writes the GDX in the format 'farmStats_(mapping).gdx'
#'
#' @inheritParams gdxbinwider
#' @param cols Which columns to derive descriptive statistics from
#' @param w Column with the Weights for the weighted mean
#' @param writegdx Logical. If `TRUE`, it writes a GDX with the descriptive statistics.
#' @param filtern Logical. If `TRUE`, results will be limited to more than 15 observations per variable for reporting
#'
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' groupstats('FarmDynRexampledata.gdx',
#'             BINDir="inst/extdata/GAMS/",
#'             gdxmap = 'map2binid',
#'             mapping = 'mapping',
#'             cols = c('a', 'b'),
#'             w='Weight')
#' @seealso
#' \itemize{
#' \item{\code{\link{summary]}}}{summary statistics}
#' \item{\code{\link[psych]{describe}}}{Descriptive statistics}
#' \item{\code{\link[gdxrrw]{wgdx}}}{Write R data to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.lst}}}{Write multiple symbols to GDX}
#' \item{\code{\link[tidyr]{pivot_longer}}}{Make dataframes longer}
#' }
#' @export groupstats
#FIXME fix the example data!! Not working
groupstats <- function(filename, BINDir, gdxmap, mapping, cols, w, writegdx = TRUE, filtern = FALSE) {

  if ("BINDir" %in% ls(envir = .GlobalEnv) & missing(BINDir)) {
    BINDir <- get("BINDir", envir = .GlobalEnv)
  } else {
    BINDir
  }


  data <- gdxbinwider(filename, BINDir, gdxmap, mapping)
  names(data) <- gsub(x=names(data), pattern = "\\w*%", '')
  groupmap <- data %>%
    dplyr::select(dplyr::all_of(mapping), dplyr::all_of(cols), dplyr::all_of(w))  %>%
    dplyr::summarise(weightedmean = dplyr::across(dplyr::all_of(cols),~ weighted.mean(as.numeric(as.character(.x)), w=.data[[w]],na.rm=TRUE)), # Make a new column named weightedmean where the values are the weighted means of only the numeric columns (otherwise error)
                     min = dplyr::across(dplyr::all_of(cols),~ min(as.numeric(as.character(.x))), na.rm =TRUE), # Same as weightedmean but with min
                     max = dplyr::across(dplyr::all_of(cols),~ max(as.numeric(as.character(.x))), na.rm =TRUE), # Idem
                     median = dplyr::across(dplyr::all_of(cols),~ median(as.numeric(as.character(.x))), na.rm =TRUE), # Idem
                     mode = dplyr::across(dplyr::all_of(cols),~ Modes(as.numeric(as.character(.x)))),
                     n = dplyr::across(dplyr::all_of(cols),~ sum(!is.na(.x))), # Make a column with n of each variable in the group
                     .groups = 'keep' # .keep is to keep the grouped groups as in the original mapping (otherwise it will group with only one group, but the results are the same)
  )


  groupmap <- groupmap %>% tidyr::unpack(cols = c(weightedmean, min, max, median, mode, n), names_sep = "%") %>% # Data cleaning activities and making a simple table
    tidyr::pivot_longer(cols = -dplyr::all_of(mapping), names_to = c('item1', 'variable'), names_sep = "%") %>%
    tidyr::pivot_wider(id_cols = c(dplyr::all_of(mapping), variable), names_from = item1, values_from = value)

  groupmap[] <- lapply(groupmap, function(x) if(is.numeric(x)) round(x, digits = 2) else x) # Rounding the results, comment if not needed
  groupmap[] <- lapply(groupmap, function(x) if(is.factor(x)) as.factor(x) else x) # For some reason, factors include ALL factors  (BIN_IDs, soil type, random things),
  # this results in gdx file with 1000s of unwanted data that serves no use, factor(x) eliminates that.

  if (filtern == TRUE) {
    groupmap <- dplyr::filter(groupmap, n >= 15) # Keep variables that have more than 15 observations (as seen in column 'n', created earlier)
  } # Should GROUPS be filtered or VARIABLES?
  if (writegdx == TRUE) {
    allmaps <- paste0(mapping[1:length(mapping)], '.gdx')
    gdxfilename <- paste('farmStats', allmaps, sep = '_')

    gdxreshape(gdxName = gdxfilename, as.data.frame(groupmap), sum(length(mapping), 2), symName = 'p_farmStats',
                 tName = 'colsFarmStats', order = c(1:sum(length(mapping),1),0)
    )
    return(groupmap)
  } else
    return(groupmap)
}


<<<<<<< HEAD
## updateFarmData ----
#' Reshape from wide to long and save to GDX
=======
## samplr ----
#' Create sample farms
>>>>>>> 1ebeb0906d519cd31fea60640b1541768ae43ad8
#'
#' @description
#' `updateFarmData()` creates sample farms by aggregating data based on the weighted mean and the selected mapping for use in FarmDyn.
#' For non-numerical globals, it summarises based on the mode using the `Modes()` function. When `writegdx` is `TRUE`, it writes the GDX in the format 'farmData_(mapping).gdx'.
#'
#' @inheritParams groupstats
#' @param cptcoeffs Logical. When this is set to `TRUE` it calculates farm-specific parameters based on CPT coefficients
#' @param farmchars GDX file containing farm characteristics
#' @param cptcoeffsxl Location of the CPT coefficients excel file
#'
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' updateFarmData('FarmDynRexampledata.gdx',
#'         &BINDir="inst/extdata/GAMS/",
#'         &gdxmap = 'map2binid',
#'         &mapping = 'mapping',
#'         &w='Weight')
#' @seealso
#' \itemize{
#' \item{\code{\link[FarmDynR]{gdxbinwider}}}{Widens BIN data directly from GDX}
#' \item{\code{\link[FarmDynR]{gdxreshape}}}{Lengthens data and saves to GDX}
#' \item{\code{\link[gdxrrw]{wgdx}}}{Write R data to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.lst}}}{Write multiple symbols to GDX}
#' \item{\code{\link[dplyr]{summarise}}}{Make dataframes longer}
#' \item{\code{\link{weighted.mean]}}}{Calculates weighted mean}
#' }
#' @export updateFarmData
updateFarmData <- function(filename, BINDir,  gdxmap, mapping, writegdx = TRUE, cptcoeffs = FALSE, farmchars = NULL, cptcoeffsxl = NULL) {


  if ("BINDir" %in% ls(envir = .GlobalEnv) & missing(BINDir)) {
    BINDir <- get("BINDir", envir = .GlobalEnv)
  } else {
    BINDIR
  }

  map2gui <- gdxbinwider(filename, BINDir, gdxmap, mapping)

  if (cptcoeffs == TRUE) {
    # TODO: Could be done more programatically
    farmchars <- gdxload(farmchars, 'p_farmCharBIN', symbol = 'param', symName= "p_farmCharBIN", names=c('all_binid', 'year', 'char', 'value'), compress=FALSE, ts=FALSE,
                         squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE)

    cptcoeffs <- read_xlsx(cptcoeffsxl,sheet = 'dat')

    farmchars <- farmchars[order(-as.numeric(as.character(farmchars$year))),]

    narabland <- map2gui %>% ungroup() %>%  select(c('all_binid', `global%nArabLand`))

    colnames(narabland)[2] <- 'ArabLand'

    farmchars <- farmchars %>% pivot_wider(id_cols = c(all_binid, year), values_from = value, names_from = char) %>%
      mutate('PropSalesArable' = 1)

    farmchars <- farmchars[!duplicated(farmchars$all_binid),]

    farmchars[is.na(farmchars)] <- 0 #NAs are produced when going from long to wide.

    farmchars <- inner_join(farmchars, narabland, by='all_binid') %>% mutate('logArabLandabs' = log(abs(ArabLand)))

    farmchars[] <- lapply(farmchars,function(x) if(is.factor(x)) factor(x) else x) %>% na.omit()

    colnames(cptcoeffs)[1]<- 'char'

    alphaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_alpha[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()

    betaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_beta[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()

    gammaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_gamma[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()

    deltaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_delta[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()

    alpha <- rowSums(alphaprod)+cptcoeffs$b_alpha[7]

    beta <- rowSums(betaprod)+cptcoeffs$b_beta[7]

    delta <- rowSums(deltaprod)+cptcoeffs$b_delta[7]

    gamma <- rowSums(gammaprod)+cptcoeffs$b_gamma[7]

    coeffs <- list(data.frame('TKAlpha' = alpha, 'all_binid' = factor(farmchars$all_binid)),data.frame('TKBeta' = beta,'all_binid' = factor(farmchars$all_binid)),
                   data.frame('TKdelta' = delta, 'all_binid' = factor(farmchars$all_binid)), data.frame('TKgamma' = gamma, 'all_binid' = factor(farmchars$all_binid)))

    map2gui <- Reduce(function(x, y) merge(x, y, by="all_binid"), list(map2gui,coeffs))
    map2gui[] <- lapply(map2gui,function(x) if(is.factor(x)) factor(x) else x)

    map2gui <- map2gui %>%
      rename('global%TKAlpha' = 'TKAlpha',
             'global%TKBeta' = 'TKBeta',
             'global%TKdelta' = 'TKdelta',
             'global%TKgamma' = 'TKgamma'
      )
    map2gui$all_binid.1 <- NULL
    map2gui$all_binid.2 <- NULL
    map2gui$all_binid.3 <- NULL
  }

  map2gui <- map2gui %>% dplyr::select(-all_binid) %>%
    summarise(dplyr::across(everything(),~ if(is.numeric(.)) weighted.mean(., w=.data[['Weight']], na.rm = TRUE) else Modes(.)))
  # In RStudio, ignore the (X) error unmatched bracket, everything is fine and all works.

  map2gui$Weight <- NULL

  map2gui[!colnames(map2gui) %in% mapping] <- lapply(map2gui[!colnames(map2gui) %in% mapping], function(x) if(is.factor(x)) (as.numeric(as.character(x))) else x)

  map2gui <- map2gui %>% tidyr::pivot_longer(cols = where(is.numeric), names_to = c('item1', 'item2'), names_sep = "%") %>%
    tidyr::pivot_wider(id_cols = c(dplyr::all_of(mapping), 'item1'), names_from = 'item2', values_from = 'value')
  map2gui[] <- lapply(map2gui, function(x) if(is.numeric(x)) round(x, digits = 2) else x) # Rounding the results, comment if not needed
  map2gui[is.na(map2gui)] <- 0 # By bringing these values from long to wide, there are undefined values and, therefore, NAs. BUT these are not real NAs, plus it's for modelling purposes on GAMS, which will ignore the 0s, so we can safely assign a 0 to the NAs.


  if (writegdx == TRUE) {
    allmaps <- paste0(mapping[1:length(mapping)], '.gdx')
    gdxfilename <- paste('farmData', allmaps, sep = '_')

    gdxreshape(map2gui, symDim = 3, order = c(1,2,0), gdxName = gdxfilename, symName = 'p_farmData')


    return(map2gui)
  } else
      return(map2gui)
}

## str_firstlast ----
#' @name str_line_replace
#' @rdname str_line_replace
#'
#' @title Replace first or last line in strings
#'
#' @description
#' These functions serve to change the first or last line of strings which match a specific pattern (regex).
#' `str_firstLine_replace()` replaces the first line that matches the pattern.
#' `str_lastLine_replace()` replaces the last line that matches the pattern
#' They are useful, for example, when reading a text file with many lines and you want to preserve the lines of that text file.
#' When `which='all'`, it is a wrapper for `stringr::str_replace()`.
#'
#' @param str String with pattern to make replacement
#' @param pattern Regular expression to replace
#' @param replacement What to replace the pattern with
#' @param which which one? first, last, all or the poles (first AND last)
#'
#' @return string
#' @examples
#'
#' somelines <- c('AAAAA', 'textytext', 'BBBBB', 'AAAAA', 'writingwriting', 'AAAAA', 'etc', 'etc', 'BBBBB')
#'
#' str_firstLine_replace(somelines, 'AAAAA', 'changedfirstline')
#'
#' str_lastLine_replace(somelines, 'AAAAA', 'changedlastline')
#'
#' str_line_replace(somelines, 'AAAAA', 'changedpoles', which='poles')
#'
#' str_line_replace(somelines, 'AAAAA', 'changedall', which='all')
#'
#' @seealso
#' [stringr::str_replace()]
#' @export
str_line_replace <- function(str, pattern, replacement, which=c('first', 'last', 'poles', 'all')) {

  if (which=='first') {
    str_firstLine_replace(str, pattern, replacement)
  }
  if (which=='last') {
    str_lastLine_replace(str, pattern, replacement)
  }
  if (which=='all') {
    return(stringr::str_replace(str, pattern, replacement))
  }
  if (which=='poles') {
    str_lastLine_replace(str_firstLine_replace(str, pattern, replacement), pattern, replacement)
  }
}

#' @rdname str_line_replace
#' @export str_firstLine_replace
str_firstLine_replace <- function(str, pattern, replacement) {
  str[grepl(pattern=pattern, x=str)][1] <- replacement
  return(str)
}
#' @rdname str_line_replace
#' @export str_lastLine_replace
str_lastLine_replace <- function(str, pattern, replacement) {
  str[grepl(pattern=pattern, x=str)][length(str[grepl(pattern=pattern, x=str)])] <- replacement
  return(str)
}

## writeBatch ----
#' Write batch file for batch file execution mode in FarmDyn
#'
#' @description
#' This function writes the batch file for you. It directly takes the necessary information from runInc.gms in FarmDyn, so the GUI
#' settings remain the same as you have set them.
#'
#' @inheritParams runFarmDynfromBatch
#' @inheritParams gdxbinwider
#'
#' @return Writes batch file necessary to run FarmDyn
#' @examples
#' TODO write example
#'
#' @seealso
#' \code{\link[FarmDynR]{runFarmDynfromBatch}}
#'
#' @export writeBatch

writeBatch <- function(FarmDynDir, mapping, farmIds) {

  if ("FarmDynDir" %in% ls(envir = .GlobalEnv) & missing(FarmDynDir)) {
    FarmDynDir <- get("FarmDynDir", envir = .GlobalEnv)
  } else {
    FarmDynDir
  }

  readLines(
    file.path(FarmDynDir, 'gams', 'incgen', 'runInc.gms')
  )[((which(readLines(file.path('/FARMDYNTRUNK', 'gams', 'incgen', 'runInc.gms'))=='* Setting for executing the task in batch file mode'))-1):which(readLines(file.path('/FARMDYNTRUNK', 'gams', 'incgen', 'runInc.gms'))=='* end batch execution file')] %>%
    str_replace(pattern = 'Scenario description = \\w*', replacement = paste0('Scenario description = ', mapping)) %>%
    str_firstLine_replace(pattern='Farm sample file = \\w*', replacement = paste0('  Farm sample file = ', 'farmData_', mapping)) %>%
    str_lastLine_replace(pattern='Farm sample file = \\w*', replacement = paste0('  Farm sample file = ', 'farmData_', mapping, '\n  macro = ', paste(farmIds, collapse = '\\'))) %>%
    str_replace('farmIds = \\w*', replacement = paste0('farmIds = ', farmIds[length(farmIds)])) %>%
    str_replace('execute=Gamsrun', replacement = '  startparallel
    FOR farmidinloop = %allfarms%
      farmIds  = %farmidinloop%
      execute = Gamsrun
    ENDFOR
  collectparallel
*  execute=Gamsrun
') %>%
    writeLines(con = paste(mapping, 'batch.txt', sep = '_', collapse = ''))
}


## runFarmDynfromBatch ----
#' Execute FarmDyn
#'
#' @description
#' `runFarmDynfromBatch()` does as it says in the function.
#'
#' @param FarmDynDir Directory where FarmDyn is located
#' @param IniFile Name of the IniFile
#' @param XMLFile Name of the XML file
#' @param BATCHDir Directory where the .batch file is located
#' @param BATCHFile Name of the .batch file
#'
#' @return Executes FarmDyn from R
#' @examples
#' TODO write example
#'
#' @seealso
#' *Globiom?
#'
#' @export runFarmDynfromBatch

runFarmDynfromBatch <- function(FarmDynDir, IniFile, XMLFile, BATCHDir, BATCHFile) {
#
  # make sub directories
  GUIDir <- paste(FarmDynDir,"GUI",sep="/")
  BATCHFilePath <- paste(BATCHDir, BATCHFile, sep = "\\")

  # General JAVA command
  javacmdstrg <- r"(java -Xmx1G -Xverify:none -XX:+UseParallelGC -XX:PermSize=20M -XX:MaxNewSize=32M -XX:NewSize=32M -Djava.library.path=jars -classpath jars\gig.jar de.capri.ggig.BatchExecution)"

  # append specific files to JAVA command
  javacmdparac <- paste(javacmdstrg,IniFile,XMLFile,BATCHFilePath,sep = " ")

  # create bat file
  runbat   = paste0(GUIDir,"/runfarmdyn.bat")
  if (file.exists(runbat)) x=file.remove(runbat)

  b = substr(runbat,1,2)
  b = c(b,paste('cd',gsub("/", "\\\\",GUIDir)))
  b = c(b,c("SET PATH=%PATH%;./jars"))
  b = c(b,javacmdparac)
  writeLines(b,runbat)
  rm(b)

  # execute farmdyn in batch mode
  system(runbat)


}

## gdxload ----
#' Load from GDX
#'
#' @description
#' `gdxload()` is a wrapper for gdxrrw::rgdx. It fixes the issue of having all UELs as factor levels for variables for which they do not belong.
#'
#' @param filename Name of the GDX file and its location
#' @param symbol The symbol type to be loaded (set, parameter, scalar)
#' @param symName The name of the symbol to be loaded
#' @param names Column names of the symbol
#' @param ...  Arguments to be passed to gdxrrw::rgdx(...)
#'
#' @return A dataframe
#'
#' @seealso
#' *gdxrrw::rgdx.set()
#' *gdxrrw::rgdx.param()
#' *gdxrrw::rgdx.scalar()
#'
#' @export gdxload

gdxload <- function(filename, symbol=c('set', 'param', 'scalar'), symName, names = NULL, ...) {
  if (symbol=='set') {
    symb <- gdxrrw::rgdx.set(filename, symName, names)
  }
  if (symbol=='param') {
    symb <- gdxrrw::rgdx.param(filename, symName, names)
  }
  if (symbol=='scalar') {
    symb <- gdxrrw::rgdx.scalar(filename, symName)
  }

  symb[] <- lapply(symb, function(x) if(is.factor(x)) factor(x) else x)
  return(symb)
}