Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# FarmDynR.R ----
#
# Copyright (c) 2022 Hugo Scherer - Wageningen Economic Research
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
## Modes ----
#' Retrieve mode of vector
#'
#' This function returns the mode of a vector. If the vector contains a character or factor, the most common character/factor is returned. Numbers written as characters will be compatible with non-character numbers (i.e. doubles/numeric), but the function returns a character.
#'
#' @param x vector from which to retrieve the mode from.
#' @return same class as 'x'.
#' @examples
#' Modes(x = c(1, 1, 3, 0, 2, 4, 2, 1, 5, 2, 1))
#' Modes(x = c('a','b', 'c', 'a', 'c', 'a'))
#' Modes(x = c('a', 2, 'x', 7895, 1, '2', 't', 2, 1))
#' @seealso [tabulate()]
#' @export Modes
Modes <- function(x) { # Function found on StackOverflow made by Ken Williams and expanded by digEmAll
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)] # Takes the highest incidence value
}
## gdxbinwider ----
#' Join BIN data together, make joined dataset wider, and group by a mapping
#'
#' @description
#' The `gdxbinwider()` function takes in a GDX file with BIN data as parameters p_farmData_NL and p_farmData2GUI, and a mapping as a set.
#' Then the data is widened, and the output is a tibble.
#'
#' @param filename Name of the GDX file with BIN data and mappings.
#' @param BINDir Directory where the FADN data is located.
#' @param gdxmap Name of the set in the GDX file that contains the mapping (e.g. Regs2BINID)
#' @param mapping Column name of the characteristic/variable to be grouped by (e.g. "Regions" or "Regs")
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' gdxbinwider(datafile, BINDir, 'map2binid', 'mapping')
#' @seealso
#' \itemize{
#' \item{\code{\link[gdxrrw]{rgdx.param}}}{Load GDX parameters}
#' \item{\code{\link[gdxrrw]{rgdx.set}}}{Load GDX sets}
#' \item{\code{\link[tidyr]{pivot_wider}}}{Make dataframes wider}
#' }
#' @export gdxbinwider
gdxbinwider <- function(filename, BINDir, gdxmap, mapping){
if ('BINDir' %in% ls(envir = .GlobalEnv) & missing(BINDir)) { # Checks if BINDir is in Global Environment and uses it
BINDir <- get('BINDir', envir = .GlobalEnv)
} else {
BINDir
}
#TODO Make functional column names with if statements and regex given the values of the columns when loading (e.g. if column value == 20.., colname = year)
fd2guicolnames <- c("all_binid", "item1", "item2", "value")
fdnlcolnames <- c( "year", "all_binid","item1", "value")
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
fd2gui <- (gdxrrw::rgdx.param(file.path(BINDir, filename), "p_farmData2GUI", names=fd2guicolnames, compress=FALSE, ts=FALSE,
squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE))
fdnl <- (gdxrrw::rgdx.param(file.path(BINDir, filename), "p_farmData_NL", names=fdnlcolnames, compress=FALSE, ts=FALSE,
squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE))
#TODO Make gdxmapping compatible with multiple mappings, with lapply? for loop?
# first idea: gdxmapping[] <- lapply(gdxmapping, rgdx.set(...)); gdxmapping <- list(), for i in gdxmap...
gdxmapping <- (gdxrrw::rgdx.set(file.path(BINDir,filename), gdxmap, compress=FALSE, ts=FALSE,
useDomInfo = TRUE, check.names = TRUE))
# Pick entries for non-numerical globals (1.6e+303 is code for numerical globals).
dummies <- fd2gui[which(fd2gui$all_binid=="dummy"),]
nonnumdummies <- dummies[dummies$value != 1.6e+303,]
# Separation of dummy from fd2gui
fd2gui <- fd2gui[which(fd2gui$all_binid!="dummy"),]
# Widening of the data for better and easier viewing and handling
fd2gui <- fd2gui %>%
tidyr::pivot_wider(id_cols = "all_binid", names_from = c("item1", "item2"), values_from = "value", names_sep = "%")
fdnl <- fdnl %>%
tidyr::pivot_wider(id_cols = c("all_binid", "year"), names_from = c("item1"), values_from = "value", names_sep = "%")
# Since subsetting with !duplicated() is done following the data order, reorder the data to start from youngest to oldest
# Result: all_binids are preserved for youngest years (2020, 2019...) and removed from oldest years (2013, 2014...)
fdnl <- fdnl[order(-as.numeric(fdnl$year)),]
fdnl <- fdnl[!duplicated(fdnl$all_binid),]
# Note: Some of the Weights appear in 2019 (n-1), but not 2020 (n = earliest data year), leading to NAs later on. Make sure at least the latest year has weights.
# Keep list of variables that are NOT numeric, BUT binary or other variables with other meanings.
tokeep <- c(paste("global", nonnumdummies$item2, sep = "%"), "global%soilTypeFirm", "global%derogatie")
# Finding index of global to keep only NON-numerical values based on "tokeep"
keepmatch <- match(tokeep, colnames(fd2gui))
# Making these factors
fd2gui[keepmatch] <- lapply(fd2gui[keepmatch], as.factor)
# Joining all data together
fdnl2gui <- dplyr::left_join(fd2gui, fdnl[,c('all_binid', 'Weight')], by='all_binid')
fdnl2gui[] <- lapply(fdnl2gui, function(x) if(is.factor(x)) as.factor(x) else x)
map2gui <- dplyr::right_join(fdnl2gui, gdxmapping, by='all_binid')
map2gui <- map2gui %>% dplyr::group_by(dplyr::across(dplyr::all_of({{ mapping }})))
return(map2gui)
}
## gdxreshape ----
#' Reshape from wide to long and save to GDX
#'
#' @description
#' `gdxreshape()` formats the data to be saved in GDX into long format. It is imported from the gdxrrw package with a few improvements for performance and usability, since there is a risk of it being removed from the gdxrrw package in the future.
#' We would like to thank the R GAMS team for this useful function.
#'
#' @param inDF wide dataframe.
#' @param symDim wide dataframe.
#' @param symName wide dataframe.
#' @param tName wide dataframe.
#' @param gdxName wide dataframe.
#' @param setsToo wide dataframe.
#' @param order wide dataframe.
#' @param setNames wide dataframe.
#'
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' gdxbinwider(datafile, BINDir, 'map2binid', 'mapping')
#' @seealso
#' \itemize{
#' \item{\code{\link[gdxrrw]{wgdx]}}}{Write R data to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.lst]}}}{Write multiple symbols to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.reshape]}}}{Write multiple symbols to GDX}
#' \item{\code{\link[tidyr]{pivot_longer]}}}{Make dataframes longer}
#' }
#' @export gdxreshape
gdxreshape <- function (inDF, symDim, symName=NULL, tName="time",
gdxName=NULL, setsToo=TRUE, order=NULL,
setNames=NULL) {
# Function based on gdxrrw::wgdx.reshape of the gdxrrw package, modified for performance and usability.
nCols <- ncol(inDF)
timeIdx <- symDim # default index position for time aggregate
if (is.null(order)) {
idCols <- 1:(symDim-1)
inDF[idCols] <- lapply(inDF[idCols], as.factor)
outDF <- (tidyr::pivot_longer(inDF, cols=-dplyr::all_of(idCols)))
}
else if ((! is.vector(order)) || (symDim != length(order))) {
stop ("specified order must be a vector of length symDim")
}
else {
timeIdx <- -1
if (is.character(order)) {
stop ("order must be numeric for now")
}
else if (! is.numeric(order)) {
stop ("optional order vector must be numeric or character")
}
idCols <- 1:(symDim-1) # for k in 1:symDim
if (any(duplicated(order))) {
stop ('duplicate entry in order vector: nonsense')
}
if ((symDim-1) != sum(order>0)) {
stop ('order vector must specify symDim-1 ID columns')
}
if (all(order>0)) {
stop ('order vector must have a non-positive entry to specify the "time" index')
}
timeIdx <- match(0, order)
oo <- c(idCols,(1:nCols)[-idCols])
df2 <- inDF[oo]
idCols <- 1:(symDim-1)
df2[idCols] <- lapply(df2[idCols], factor)
if (symDim == timeIdx) { # no need to re-order after reshaping
outDF <- tidyr::pivot_longer(df2, cols=-dplyr::all_of(idCols))
}
else {
df3 <- tidyr::pivot_longer(df2, cols=-dplyr::all_of(idCols))
oo <- vector(mode="integer",length=symDim+1)
oo[1:(timeIdx-1)] = 1:(timeIdx-1)
oo[timeIdx] = symDim
oo[(timeIdx+1):symDim] = (timeIdx+1):symDim-1
oo[symDim+1] = symDim+1
outDF <- (df3[oo])
}
}
outDF$name <- as.factor(outDF$name)
if (is.null(symName)) {
symName <- attr(inDF, "symName", exact=TRUE)
}
if (! is.character(symName)) {
stop ("symName must be a string")
}
attr(outDF,"symName") <- symName
symText <- attr(inDF, "ts", exact=TRUE)
if (is.character(symText)) {
attr(outDF,"ts") <- symText
}
if (is.character(tName)) {
names(outDF)[timeIdx] <- tName
}
else {
names(outDF)[timeIdx] <- 'time'
}
names(outDF)[symDim+1] <- "value"
# str(outDF)
if (setsToo) {
## write index sets first, then symName
outLst <- list()
length(outLst) <- symDim + 1
setNamesLen <- 0
if (! is.null(setNames)) {
if (! is.character(setNames)) {
stop ("setNames must be a string or string vector")
}
else if (! is.vector(setNames)) {
stop ("setNames must be a string or string vector")
}
else {
## guard against zero-length vector
setNamesLen <- length(setNames)
}
}
kk <- 0
for (i in 1:symDim) {
lvls <- levels(as.factor(outDF[[i]]))
outLst[[i]] <- list(name=names(outDF)[[i]], type='set', uels=c(list(lvls)))
if (setNamesLen > 0) { # tack on the next set text
kk <- kk + 1
outLst[[i]]$ts <- setNames[[kk]]
if (kk >= setNamesLen)
kk <- 0
}
}
outLst[[symDim+1]] <- (outDF)
if (is.character(gdxName)) {
gdxrrw::wgdx.lst(gdxName,outLst)
}
else {
return(outLst)
}
}
else {
if (is.character(gdxName)) {
gdxrrw::wgdx.lst(gdxName,outDF)
}
else {
return(list(outDF))
}
}
} # gdxreshape
## groupstats ----
#' Generate descriptive statistics and save to GDX
#'
#' @description
#' `groupstats()` returns descriptive statistics per group based on the mapping given. For example, if your mapping
#' is 'regions', this function will give you the weighted mean, median, min, max, number of observations per variable for each
#' region based on the individual farm data. When `writegdx` is `TRUE`, it writes the GDX in the format 'farmStats_(mapping).gdx'
#'
#' @inheritParams gdxbinwider
#' @param cols Which columns to derive descriptive statistics from
#' @param w Column with the Weights for the weighted mean
#' @param writegdx Logical. If `TRUE`, it writes a GDX with the descriptive statistics.
#' @param filtern Logical. If `TRUE`, results will be limited to more than 15 observations per variable for reporting
#'
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' groupstats('FarmDynRexampledata.gdx',
#' BINDir="inst/extdata/GAMS/",
#' gdxmap = 'map2binid',
#' mapping = 'mapping',
#' cols = c('a', 'b'),
#' w='Weight')
#' @seealso
#' \itemize{
#' \item{\code{\link{summary]}}}{summary statistics}
#' \item{\code{\link[psych]{describe}}}{Descriptive statistics}
#' \item{\code{\link[gdxrrw]{wgdx}}}{Write R data to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.lst}}}{Write multiple symbols to GDX}
#' \item{\code{\link[tidyr]{pivot_longer}}}{Make dataframes longer}
#' }
#' @export groupstats
#FIXME fix the example data!! Not working
groupstats <- function(filename, BINDir, gdxmap, mapping, cols, w, writegdx = TRUE, filtern = FALSE) {
if ("BINDir" %in% ls(envir = .GlobalEnv) & missing(BINDir)) {
BINDir <- get("BINDir", envir = .GlobalEnv)
} else {
BINDir
}
data <- gdxbinwider(filename, BINDir, gdxmap, mapping)
names(data) <- gsub(x=names(data), pattern = "\\w*%", '')
groupmap <- data %>%
dplyr::select(dplyr::all_of(mapping), dplyr::all_of(cols), dplyr::all_of(w)) %>%
dplyr::summarise(weightedmean = dplyr::across(dplyr::all_of(cols),~ weighted.mean(as.numeric(as.character(.x)), w=.data[[w]],na.rm=TRUE)), # Make a new column named weightedmean where the values are the weighted means of only the numeric columns (otherwise error)
min = dplyr::across(dplyr::all_of(cols),~ min(as.numeric(as.character(.x))), na.rm =TRUE), # Same as weightedmean but with min
max = dplyr::across(dplyr::all_of(cols),~ max(as.numeric(as.character(.x))), na.rm =TRUE), # Idem
median = dplyr::across(dplyr::all_of(cols),~ median(as.numeric(as.character(.x))), na.rm =TRUE), # Idem
mode = dplyr::across(dplyr::all_of(cols),~ Modes(as.numeric(as.character(.x)))[1]),
n = dplyr::across(dplyr::all_of(cols),~ sum(!is.na(.x))), # Make a column with n of each variable in the group
.groups = 'keep' # .keep is to keep the grouped groups as in the original mapping (otherwise it will group with only one group, but the results are the same)
)
groupmap <- groupmap %>% tidyr::unpack(cols = c(weightedmean, min, max, median, mode, n), names_sep = "%") %>% # Data cleaning activities and making a simple table
tidyr::pivot_longer(cols = -dplyr::all_of(mapping), names_to = c('item1', 'variable'), names_sep = "%") %>%
tidyr::pivot_wider(id_cols = c(dplyr::all_of(mapping), variable), names_from = item1, values_from = value)
groupmap[] <- lapply(groupmap, function(x) if(is.numeric(x)) round(x, digits = 2) else x) # Rounding the results, comment if not needed
groupmap[] <- lapply(groupmap, function(x) if(is.factor(x)) as.factor(x) else x) # For some reason, factors include ALL factors (BIN_IDs, soil type, random things),
# this results in gdx file with 1000s of unwanted data that serves no use, factor(x) eliminates that.
if (filtern == TRUE) {
groupmap <- dplyr::filter(groupmap, n >= 15) # Keep variables that have more than 15 observations (as seen in column 'n', created earlier)
if (writegdx == TRUE) {
allmaps <- paste0(mapping[1:length(mapping)], '.gdx')
gdxfilename <- paste('farmStats', allmaps, sep = '_')
gdxreshape(gdxName = gdxfilename, as.data.frame(groupmap), sum(length(mapping), 2), symName = 'p_farmStats',
tName = 'colsFarmStats', order = c(1:sum(length(mapping),1),0)
)
return(groupmap)
} else
return(groupmap)
}
## updateFarmData ----
#' Reshape from wide to long and save to GDX
#' Create sample farms
#>>>>>>> 1ebeb0906d519cd31fea60640b1541768ae43ad8
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
#'
#' @description
#' `updateFarmData()` creates sample farms by aggregating data based on the weighted mean and the selected mapping for use in FarmDyn.
#' For non-numerical globals, it summarises based on the mode using the `Modes()` function. When `writegdx` is `TRUE`, it writes the GDX in the format 'farmData_(mapping).gdx'.
#'
#' @inheritParams groupstats
#' @param cptcoeffs Logical. When this is set to `TRUE` it calculates farm-specific parameters based on CPT coefficients
#' @param farmchars GDX file containing farm characteristics
#' @param cptcoeffsxl Location of the CPT coefficients excel file
#'
#' @return A tibble `tbl_df`.
#' @examples
#' BINDir <- "inst/extdata/GAMS"
#' datafile <- 'FarmDynRexampledata.gdx'
#' updateFarmData('FarmDynRexampledata.gdx',
#' &BINDir="inst/extdata/GAMS/",
#' &gdxmap = 'map2binid',
#' &mapping = 'mapping',
#' &w='Weight')
#' @seealso
#' \itemize{
#' \item{\code{\link[FarmDynR]{gdxbinwider}}}{Widens BIN data directly from GDX}
#' \item{\code{\link[FarmDynR]{gdxreshape}}}{Lengthens data and saves to GDX}
#' \item{\code{\link[gdxrrw]{wgdx}}}{Write R data to GDX}
#' \item{\code{\link[gdxrrw]{wgdx.lst}}}{Write multiple symbols to GDX}
#' \item{\code{\link[dplyr]{summarise}}}{Make dataframes longer}
#' \item{\code{\link{weighted.mean]}}}{Calculates weighted mean}
#' }
#' @export updateFarmData
updateFarmData <- function(filename, BINDir, gdxmap, mapping, writegdx = TRUE, cptcoeffs = FALSE, farmchars = NULL, cptcoeffsxl = NULL) {
if ("BINDir" %in% ls(envir = .GlobalEnv) & missing(BINDir)) {
BINDir <- get("BINDir", envir = .GlobalEnv)
} else {
BINDIR
}
map2gui <- gdxbinwider(filename, BINDir, gdxmap, mapping)
if (cptcoeffs == TRUE) {
# TODO: Could be done more programatically
farmchars <- gdxload(farmchars, 'p_farmCharBIN', symbol = 'param', symName= "p_farmCharBIN", names=c('all_binid', 'year', 'char', 'value'), compress=FALSE, ts=FALSE,
squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE)
cptcoeffs <- read_xlsx(cptcoeffsxl,sheet = 'dat')
farmchars <- farmchars[order(-as.numeric(as.character(farmchars$year))),]
narabland <- map2gui %>% ungroup() %>% select(c('all_binid', `global%nArabLand`))
colnames(narabland)[2] <- 'ArabLand'
farmchars <- farmchars %>% pivot_wider(id_cols = c(all_binid, year), values_from = value, names_from = char) %>%
mutate('PropSalesArable' = 1)
farmchars <- farmchars[!duplicated(farmchars$all_binid),]
farmchars[is.na(farmchars)] <- 0 #NAs are produced when going from long to wide.
farmchars <- inner_join(farmchars, narabland, by='all_binid') %>% mutate('logArabLandabs' = log(abs(ArabLand)))
farmchars[] <- lapply(farmchars,function(x) if(is.factor(x)) factor(x) else x) %>% na.omit()
colnames(cptcoeffs)[1]<- 'char'
alphaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_alpha[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()
betaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_beta[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()
gammaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_gamma[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()
deltaprod <- farmchars[colnames(farmchars) %in% cptcoeffs$char]*cptcoeffs$b_delta[match(names(farmchars), cptcoeffs$char)][col(farmchars)] %>% na.omit()
alpha <- rowSums(alphaprod)+cptcoeffs$b_alpha[7]
beta <- rowSums(betaprod)+cptcoeffs$b_beta[7]
delta <- rowSums(deltaprod)+cptcoeffs$b_delta[7]
gamma <- rowSums(gammaprod)+cptcoeffs$b_gamma[7]
coeffs <- list(data.frame('TKAlpha' = alpha, 'all_binid' = factor(farmchars$all_binid)),data.frame('TKBeta' = beta,'all_binid' = factor(farmchars$all_binid)),
data.frame('TKdelta' = delta, 'all_binid' = factor(farmchars$all_binid)), data.frame('TKgamma' = gamma, 'all_binid' = factor(farmchars$all_binid)))
map2gui <- Reduce(function(x, y) merge(x, y, by="all_binid"), list(map2gui,coeffs))
map2gui[] <- lapply(map2gui,function(x) if(is.factor(x)) factor(x) else x)
map2gui <- map2gui %>%
rename('global%TKAlpha' = 'TKAlpha',
'global%TKBeta' = 'TKBeta',
'global%TKdelta' = 'TKdelta',
'global%TKgamma' = 'TKgamma'
)
map2gui$all_binid.1 <- NULL
map2gui$all_binid.2 <- NULL
map2gui$all_binid.3 <- NULL
}
map2gui <- map2gui %>% dplyr::select(-all_binid) %>%
summarise(dplyr::across(everything(),~ if(is.numeric(.)) weighted.mean(., w=.data[['Weight']], na.rm = TRUE) else Modes(.)))
# In RStudio, ignore the (X) error unmatched bracket, everything is fine and all works.
map2gui$Weight <- NULL
map2gui[!colnames(map2gui) %in% mapping] <- lapply(map2gui[!colnames(map2gui) %in% mapping], function(x) if(is.factor(x)) (as.numeric(as.character(x))) else x)
map2gui <- map2gui %>% tidyr::pivot_longer(cols = where(is.numeric), names_to = c('item1', 'item2'), names_sep = "%") %>%
tidyr::pivot_wider(id_cols = c(dplyr::all_of(mapping), 'item1'), names_from = 'item2', values_from = 'value')
map2gui[] <- lapply(map2gui, function(x) if(is.numeric(x)) round(x, digits = 2) else x) # Rounding the results, comment if not needed
map2gui[is.na(map2gui)] <- 0 # By bringing these values from long to wide, there are undefined values and, therefore, NAs. BUT these are not real NAs, plus it's for modelling purposes on GAMS, which will ignore the 0s, so we can safely assign a 0 to the NAs.
if (writegdx == TRUE) {
allmaps <- paste0(mapping[1:length(mapping)], '.gdx')
gdxfilename <- paste('farmData', allmaps, sep = '_')
gdxreshape(map2gui, symDim = 3, order = c(1,2,0), gdxName = gdxfilename, symName = 'p_farmData')
return(map2gui)
} else
return(map2gui)
}
## str_firstlast ----
#' @name str_line_replace
#' @rdname str_line_replace
#'
#' @title Replace first or last line in strings
#'
#' @description
#' These functions serve to change the first or last line of strings which match a specific pattern (regex).
#' `str_firstLine_replace()` replaces the first line that matches the pattern.
#' `str_lastLine_replace()` replaces the last line that matches the pattern
#' They are useful, for example, when reading a text file with many lines and you want to preserve the lines of that text file.
#' When `which='all'`, it is a wrapper for `stringr::str_replace()`.
#'
#' @param str String with pattern to make replacement
#' @param pattern Regular expression to replace
#' @param replacement What to replace the pattern with
#' @param which which one? first, last, all or the poles (first AND last)
#'
#' @return string
#' @examples
#'
#' somelines <- c('AAAAA', 'textytext', 'BBBBB', 'AAAAA', 'writingwriting', 'AAAAA', 'etc', 'etc', 'BBBBB')
#'
#' str_firstLine_replace(somelines, 'AAAAA', 'changedfirstline')
#'
#' str_lastLine_replace(somelines, 'AAAAA', 'changedlastline')
#'
#' str_line_replace(somelines, 'AAAAA', 'changedpoles', which='poles')
#'
#' str_line_replace(somelines, 'AAAAA', 'changedall', which='all')
#'
#' @seealso
#' [stringr::str_replace()]
#' @export
str_line_replace <- function(str, pattern, replacement, which=c('first', 'last', 'poles', 'all')) {
if (which=='first') {
str_firstLine_replace(str, pattern, replacement)
}
if (which=='last') {
str_lastLine_replace(str, pattern, replacement)
}
if (which=='all') {
return(stringr::str_replace(str, pattern, replacement))
}
if (which=='poles') {
str_lastLine_replace(str_firstLine_replace(str, pattern, replacement), pattern, replacement)
}
}
#' @rdname str_line_replace
#' @export str_firstLine_replace
str_firstLine_replace <- function(str, pattern, replacement) {
str[grepl(pattern=pattern, x=str)][1] <- replacement
return(str)
}
#' @rdname str_line_replace
#' @export str_lastLine_replace
str_lastLine_replace <- function(str, pattern, replacement) {
str[grepl(pattern=pattern, x=str)][length(str[grepl(pattern=pattern, x=str)])] <- replacement
return(str)
}
## writeBatch ----
#' Write batch file for batch file execution mode in FarmDyn
#'
#' @description
#' This function writes the batch file for you. It directly takes the necessary information from runInc.gms in FarmDyn, so the GUI
#' settings remain the same as you have set them.
#'
#' @inheritParams runFarmDynfromBatch
#' @inheritParams gdxbinwider
#'
#' @return Writes batch file necessary to run FarmDyn
#' @examples
#' TODO write example
#'
#' @seealso
#' \code{\link[FarmDynR]{runFarmDynfromBatch}}
#'
#' @export writeBatch
writeBatch <- function(FarmDynDir, mapping, farmIds) {
if ("FarmDynDir" %in% ls(envir = .GlobalEnv) & missing(FarmDynDir)) {
FarmDynDir <- get("FarmDynDir", envir = .GlobalEnv)
} else {
FarmDynDir
}
readLines(
file.path(FarmDynDir, 'gams', 'incgen', 'runInc.gms')
)[((which(readLines(file.path('/FARMDYNTRUNK', 'gams', 'incgen', 'runInc.gms'))=='* Setting for executing the task in batch file mode'))-1):which(readLines(file.path('/FARMDYNTRUNK', 'gams', 'incgen', 'runInc.gms'))=='* end batch execution file')] %>%
str_replace(pattern = 'Scenario description = \\w*', replacement = paste0('Scenario description = ', mapping)) %>%
str_firstLine_replace(pattern='Farm sample file = \\w*', replacement = paste0(' Farm sample file = ', 'farmData_', mapping)) %>%
str_lastLine_replace(pattern='Farm sample file = \\w*', replacement = paste0(' Farm sample file = ', 'farmData_', mapping, '\n macro = ', paste(farmIds, collapse = '\\'))) %>%
str_replace('farmIds = \\w*', replacement = paste0('farmIds = ', farmIds[length(farmIds)])) %>%
str_replace('execute=Gamsrun', replacement = ' startparallel
FOR farmidinloop = %allfarms%
farmIds = %farmidinloop%
execute = Gamsrun
ENDFOR
collectparallel
* execute=Gamsrun
') %>%
writeLines(con = paste(mapping, 'batch.txt', sep = '_', collapse = ''))
}
## runFarmDynfromBatch ----
#' Execute FarmDyn
#'
#' @description
#' `runFarmDynfromBatch()` does as it says in the function.
#'
#' @param FarmDynDir Directory where FarmDyn is located
#' @param IniFile Name of the IniFile
#' @param XMLFile Name of the XML file
#' @param BATCHDir Directory where the .batch file is located
#' @param BATCHFile Name of the .batch file
#'
#' @return Executes FarmDyn from R
#' @examples
#' TODO write example
#'
#' @seealso
#' *Globiom?
#'
#' @export runFarmDynfromBatch
runFarmDynfromBatch <- function(FarmDynDir, IniFile, XMLFile, BATCHDir, BATCHFile) {
#
# make sub directories
GUIDir <- paste(FarmDynDir,"GUI",sep="/")
BATCHFilePath <- paste(BATCHDir, BATCHFile, sep = "\\")
# General JAVA command
javacmdstrg <- r"(java -Xmx1G -Xverify:none -XX:+UseParallelGC -XX:PermSize=20M -XX:MaxNewSize=32M -XX:NewSize=32M -Djava.library.path=jars -classpath jars\gig.jar de.capri.ggig.BatchExecution)"
# append specific files to JAVA command
javacmdparac <- paste(javacmdstrg,IniFile,XMLFile,BATCHFilePath,sep = " ")
# create bat file
runbat = paste0(GUIDir,"/runfarmdyn.bat")
if (file.exists(runbat)) x=file.remove(runbat)
b = substr(runbat,1,2)
b = c(b,paste('cd',gsub("/", "\\\\",GUIDir)))
b = c(b,c("SET PATH=%PATH%;./jars"))
b = c(b,javacmdparac)
writeLines(b,runbat)
rm(b)
# execute farmdyn in batch mode
system(runbat)
}
## gdxload ----
#' Load from GDX
#'
#' @description
#' `gdxload()` is a wrapper for gdxrrw::rgdx. It fixes the issue of having all UELs as factor levels for variables for which they do not belong.
#'
#' @param filename Name of the GDX file and its location
#' @param symbol The symbol type to be loaded (set, parameter, scalar)
#' @param symName The name of the symbol to be loaded
#' @param names Column names of the symbol
#' @param ... Arguments to be passed to gdxrrw::rgdx(...)
#'
#' @return A dataframe
#'
#' @seealso
#' *gdxrrw::rgdx.set()
#' *gdxrrw::rgdx.param()
#' *gdxrrw::rgdx.scalar()
#'
#' @export gdxload
gdxload <- function(filename, symbol=c('set', 'param', 'scalar'), symName, names = NULL, ...) {
if (symbol=='set') {
symb <- gdxrrw::rgdx.set(filename, symName, names)
}
if (symbol=='param') {
symb <- gdxrrw::rgdx.param(filename, symName, names)
}
if (symbol=='scalar') {
symb <- gdxrrw::rgdx.scalar(filename, symName)
}
symb[] <- lapply(symb, function(x) if(is.factor(x)) factor(x) else x)
return(symb)
}