# DynR.R ----
#
# Copyright (c) 2022 Hugo Scherer - Wageningen Economic Research
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
## Modes ----
Retrieve mode of vector
This function returns the mode of a vector. If the vector contains a character or factor, the most common character/factor is returned. Numbers written as characters will be compatible with non-character numbers (i.e. doubles/numeric), but the function returns a character.
@param x vector from which to retrieve the mode from. @return same class as ‘x’. @examples Modes(x = c(1, 1, 3, 0, 2, 4, 2, 1, 5, 2, 1)) Modes(x = c(‘a’,‘b’, ‘c’, ‘a’, ‘c’, ‘a’)) Modes(x = c(‘a’, 2, ‘x’, 7895, 1, ‘2’, ‘t’, 2, 1)) @seealso [tabulate()] @export Modes
Modes <- function(x) { # Function found on StackOverflow made by Ken Williams and expanded by digEmAll
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)] # Takes the highest incidence value
}
## gdxbinwider ----
Join BIN data together, make joined dataset wider, and group by a mapping
@description The
gdxbinwider() function takes in a GDX file with BIN data as
parameters p_farmData_NL and p_farmData2GUI, and a mapping as a set.
Then the data is widened, and the output is a tibble.
@param filename Name of the GDX file
with BIN data and mappings. @param BINDir
Directory where the FADN data is located. @param gdxmap Name of the set in the GDX file
that contains the mapping (e.g. Regs2BINID) @param mapping Column name of the
characteristic/variable to be grouped by (e.g. “Regions” or “Regs”)
@return A tibble tbl_df.
@examples BINDir <- “inst/extdata/GAMS”
datafile <- ‘DynRexampledata.gdx’ gdxbinwider(datafile, BINDir,
‘map2binid’, ‘mapping’) @seealso @export gdxbinwider
gdxbinwider <- function(filename, BINDir, gdxmap, mapping){
if ('BINDir' %in% ls(envir = .GlobalEnv) & missing(BINDir)) { # Checks if BINDir is in Global Environment and uses it
BINDir <- get('BINDir', envir = .GlobalEnv)
} else {
BINDir
}
fd2guicolnames <- c("all_binid", "item1", "item2", "value")
fdnlcolnames <- c("all_binid", "year", "item1", "value")
fd2gui <- (gdxrrw::rgdx.param(paste(BINDir,filename, sep="/"), "p_farmData2GUI", names=fd2guicolnames, compress=FALSE, ts=FALSE,
squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE))
fdnl <- (gdxrrw::rgdx.param(paste(BINDir,filename, sep="/"), "p_farmData_NL", names=fdnlcolnames, compress=FALSE, ts=FALSE,
squeeze=TRUE, useDomInfo = TRUE, check.names = TRUE))
#TODO Make gdxmapping compatible with multiple mappings, with lapply? for loop?
# first idea: gdxmapping[] <- lapply(gdxmapping, rgdx.set(...)); gdxmapping <- list(), for i in gdxmap...
# Note: for loops used to be bad in R, but now they are quick, even quicker than lapply, but for some applications
# such as defining an object several times they are much slower and memory inefficient than lapply.
# For small data maybe no problem.
gdxmapping <- (gdxrrw::rgdx.set(paste(BINDir,filename, sep="/"), gdxmap, compress=FALSE, ts=FALSE,
useDomInfo = TRUE, check.names = TRUE))
# Values of "dummy" are turned into number codes when loading into R. This changes the values to the original ones.
dummies <- fd2gui[which(fd2gui$all_binid=="dummy"),]
dummies$value[which(dummies$value==1.6e+303)] <- "num"
dummies$value[which(dummies$value==1.59e+303)] <- "TRUE"
dummies$value[which(dummies$value==1.56e+303)] <- "on"
# Restrict to only those that have value num (i.e. numeric). Numerical values may change.
# Pick entries for numerical non-numerical globals with the highest incidence.
nonnumdummies <- dummies[dummies$value != "num",]
# Separation of dummy and misc from fd2gui
fd2gui <- fd2gui[which(fd2gui$all_binid!="dummy"),]
# Widening of the data for better and easier viewing and handling
fd2gui <- fd2gui %>%
tidyr::pivot_wider(id_cols = "all_binid", names_from = c("item1", "item2"), values_from = "value", names_sep = "%")
fdnl <- fdnl %>%
tidyr::pivot_wider(id_cols = c("all_binid", "year"), names_from = c("item1"), values_from = "value", names_sep = "%")
# Since subsetting with !duplicated() is done following the data order, reorder the data to start from youngest to oldest
# Result: all_binids are preserved for youngest years (2020, 2019...) and removed from oldest years (2013, 2014...)
fdnl <- fdnl[order(-as.numeric(fdnl$year)),]
fdnl <- fdnl[!duplicated(fdnl$all_binid),] # Note: Some of the Weights appear in 2019 (n-1), but not 2020 (n = earliest data year), leading to NAs later on. Make sure at least the latest year has weights.
# Keep list of variables that are NOT numeric, BUT binary or other variables with other meanings.
tokeep <- c(paste("global", nonnumdummies$item2, sep = "%"), "global%soilTypeFirm", "global%derogatie")
# Finding index of global to keep only NON-numerical values based on "tokeep"
keepmatch <- match(tokeep, colnames(fd2gui))
# Making these factors
fd2gui[keepmatch] <- lapply(fd2gui[keepmatch], as.factor)
# Joining all data together
fdnl2gui <- dplyr::right_join(fd2gui, fdnl[,c('all_binid', 'Weight')], by='all_binid')
fdnl2gui[] <- lapply(fdnl2gui, function(x) if(is.factor(x)) as.factor(x) else x)
map2gui <- dplyr::right_join(fdnl2gui, gdxmapping, by='all_binid')
map2gui <- map2gui %>% dplyr::group_by(dplyr::across(dplyr::all_of({{ mapping }})))
return(map2gui)
}
## gdxreshape ----
Reshape from wide to long and save to GDX
@description gdxreshape()
formats the data to be saved in GDX into long format. It is imported
from the gdxrrw package with a few improvements for performance and
usability, since there is a risk of it being removed from the gdxrrw
package in the future. We would like to thank the R GAMS team for this
useful function.
@param inDF wide dataframe. @param symDim wide dataframe. @param symName wide dataframe. @param tName wide dataframe. @param gdxName wide dataframe. @param setsToo wide dataframe. @param order wide dataframe. @param setNames wide dataframe.
@return A tibble tbl_df.
@examples BINDir <- “inst/extdata/GAMS”
datafile <- ‘DynRexampledata.gdx’ gdxbinwider(datafile, BINDir,
‘map2binid’, ‘mapping’) @seealso @export gdxreshape
gdxreshape <- function (inDF, symDim, symName=NULL, tName="time",
gdxName=NULL, setsToo=TRUE, order=NULL,
setNames=NULL) {
# Function based on gdxrrw::wgdx.reshape of the gdxrrw package, modified for performance and usability by Hugo Scherer.
# 23-09-2022 hugo.scherer@wur.nl
nCols <- ncol(inDF)
timeIdx <- symDim # default index position for time aggregate
if (is.null(order)) {
idCols <- 1:(symDim-1)
inDF[idCols] <- lapply(inDF[idCols], as.factor)
outDF <- (tidyr::pivot_longer(inDF, cols=-dplyr::all_of(idCols)))
}
else if ((! is.vector(order)) || (symDim != length(order))) {
stop ("specified order must be a vector of length symDim")
}
else {
timeIdx <- -1
if (is.character(order)) {
stop ("order must be numeric for now")
}
else if (! is.numeric(order)) {
stop ("optional order vector must be numeric or character")
}
idCols <- 1:(symDim-1) # for k in 1:symDim
if (any(duplicated(order))) {
stop ('duplicate entry in order vector: nonsense')
}
if ((symDim-1) != sum(order>0)) {
stop ('order vector must specify symDim-1 ID columns')
}
if (all(order>0)) {
stop ('order vector must have a non-positive entry to specify the "time" index')
}
timeIdx <- match(0, order)
oo <- c(idCols,(1:nCols)[-idCols])
df2 <- inDF[oo]
idCols <- 1:(symDim-1)
df2[idCols] <- lapply(df2[idCols], factor)
if (symDim == timeIdx) { # no need to re-order after reshaping
outDF <- tidyr::pivot_longer(df2, cols=-dplyr::all_of(idCols))
}
else {
df3 <- tidyr::pivot_longer(df2, cols=-dplyr::all_of(idCols))
oo <- vector(mode="integer",length=symDim+1)
oo[1:(timeIdx-1)] = 1:(timeIdx-1)
oo[timeIdx] = symDim
oo[(timeIdx+1):symDim] = (timeIdx+1):symDim-1
oo[symDim+1] = symDim+1
outDF <- (df3[oo])
}
}
outDF$name <- as.factor(outDF$name)
if (is.null(symName)) {
symName <- attr(inDF, "symName", exact=TRUE)
}
if (! is.character(symName)) {
stop ("symName must be a string")
}
attr(outDF,"symName") <- symName
symText <- attr(inDF, "ts", exact=TRUE)
if (is.character(symText)) {
attr(outDF,"ts") <- symText
}
if (is.character(tName)) {
names(outDF)[timeIdx] <- tName
}
else {
names(outDF)[timeIdx] <- 'time'
}
names(outDF)[symDim+1] <- "value"
# str(outDF)
if (setsToo) {
## write index sets first, then symName
outLst <- list()
length(outLst) <- symDim + 1
setNamesLen <- 0
if (! is.null(setNames)) {
if (! is.character(setNames)) {
stop ("setNames must be a string or string vector")
}
else if (! is.vector(setNames)) {
stop ("setNames must be a string or string vector")
}
else {
## guard against zero-length vector
setNamesLen <- length(setNames)
}
}
kk <- 0
for (i in 1:symDim) {
lvls <- levels(as.factor(outDF[[i]]))
outLst[[i]] <- list(name=names(outDF)[[i]], type='set', uels=c(list(lvls)))
if (setNamesLen > 0) { # tack on the next set text
kk <- kk + 1
outLst[[i]]$ts <- setNames[[kk]]
if (kk >= setNamesLen)
kk <- 0
}
}
outLst[[symDim+1]] <- (outDF)
if (is.character(gdxName)) {
gdxrrw::wgdx.lst(gdxName,outLst)
}
else {
return(outLst)
}
}
else {
if (is.character(gdxName)) {
gdxrrw::wgdx.lst(gdxName,outDF)
}
else {
return(list(outDF))
}
}
} # gdxreshape
## groupstats ----
Reshape from wide to long and save to GDX
@description groupstats()
returns descriptive statistics per group based on the mapping given. For
example, if your mapping is ‘regions’, this function will give you the
weighted mean, median, min, max, number of observations per variable for
each region based on the individual farm data. When
writegdx is TRUE, it writes the GDX in the
format ‘farmStats_(mapping).gdx’
@inheritParams gdxbinwider @param cols Which columns to derive descriptive
statistics from @param w Column with the
Weights for the weighted mean @param
writegdx Logical. If TRUE, it writes a GDX with the
descriptive statistics. @param filtern
Logical. If TRUE, results will be limited to more than 15
observations per variable for reporting
@return A tibble tbl_df.
@examples BINDir <- “inst/extdata/GAMS”
datafile <- ‘DynRexampledata.gdx’ groupstats(‘DynRexampledata.gdx’,
BINDir=“inst/extdata/GAMS/”, gdxmap = ‘map2binid’, mapping = ‘mapping’,
cols = c(‘a’, ‘b’), w=‘Weight’) @seealso
@export groupstats
#FIXME fix the example data!! Not working
groupstats <- function(filename, BINDir, gdxmap, mapping, cols, w, writegdx = TRUE, filtern = FALSE) {
if ("BINDir" %in% ls(envir = .GlobalEnv) & missing(BINDir)) {
BINDir <- get("BINDir", envir = .GlobalEnv)
} else {
BINDir
}
data <- gdxbinwider(filename, BINDir, gdxmap, mapping)
names(data) <- gsub(x=names(data), pattern = "\\w*%", '')
groupmap <- data %>%
dplyr::select(dplyr::all_of(mapping), dplyr::all_of(cols), dplyr::all_of(w)) %>%
dplyr::summarise(weightedmean = dplyr::across(dplyr::all_of(cols),~ weighted.mean(as.numeric(as.character(.x)), w=.data[[w]],na.rm=TRUE)), # Make a new column named weightedmean where the values are the weighted means of only the numeric columns (otherwise error)
min = dplyr::across(dplyr::all_of(cols),~ min(as.numeric(as.character(.x))), na.rm =TRUE), # Same as weightedmean but with min
max = dplyr::across(dplyr::all_of(cols),~ max(as.numeric(as.character(.x))), na.rm =TRUE), # Idem
median = dplyr::across(dplyr::all_of(cols),~ median(as.numeric(as.character(.x))), na.rm =TRUE), # Idem
mode = dplyr::across(dplyr::all_of(cols),~ Modes(as.numeric(as.character(.x)))),
n = dplyr::across(dplyr::all_of(cols),~ sum(!is.na(.x))), # Make a column with n of each variable in the group
.groups = 'keep' # .keep is to keep the grouped groups as in the original mapping (otherwise it will group with only one group, but the results are the same)
)
groupmap <- groupmap %>% tidyr::unpack(cols = c(weightedmean, min, max, median, mode, n), names_sep = "%") %>% # Data cleaning activities and making a simple table
tidyr::pivot_longer(cols = -dplyr::all_of(mapping), names_to = c('item1', 'variable'), names_sep = "%") %>%
tidyr::pivot_wider(id_cols = c(dplyr::all_of(mapping), variable), names_from = item1, values_from = value)
groupmap[] <- lapply(groupmap, function(x) if(is.numeric(x)) round(x, digits = 2) else x) # Rounding the results, comment if not needed
groupmap[] <- lapply(groupmap, function(x) if(is.factor(x)) as.factor(x) else x) # For some reason, factors include ALL factors (BIN_IDs, soil type, random things),
# this results in gdx file with 1000s of unwanted data that serves no use, factor(x) eliminates that.
if (filtern == TRUE) {
groupmap <- dplyr::filter(groupmap, n >= 15) # Keep variables that have more than 15 observations (as seen in column 'n', created earlier)
} # Should GROUPS be filtered or VARIABLES?
if (writegdx == TRUE) {
allmaps <- paste0(mapping[1:length(mapping)], '.gdx')
gdxfilename <- paste('farmStats', allmaps, sep = '_')
gdxreshape(gdxName = gdxfilename, as.data.frame(groupmap), sum(length(mapping), 2), symName = 'p_farmStats',
tName = 'colsFarmStats', order = c(1:sum(length(mapping),1),0)
)
return(groupmap)
} else
return(groupmap)
}
## samplr ----
Reshape from wide to long and save to GDX
@description samplr()
creates sample farms by aggregating data based on the weighted mean and
the selected mapping for use in FarmDyn. For non-numerical globals, it
summarises based on the mode using the Modes() function.
When writegdx is TRUE, it writes the GDX in
the format ‘farmData_(mapping).gdx’.
@inheritParams groupstats
@return A tibble tbl_df.
@examples BINDir <- “inst/extdata/GAMS”
datafile <- ‘DynRexampledata.gdx’ samplr(‘DynRexampledata.gdx’,\
&BINDir=“inst/extdata/GAMS/”,\ &gdxmap = ‘map2binid’,\
&mapping = ‘mapping’,\ &w=‘Weight’) @seealso @export
samplr
samplr <- function(filename, BINDir, gdxmap, mapping, writegdx = TRUE) {
if ("BINDir" %in% ls(envir = .GlobalEnv) & missing(BINDir)) {
BINDir <- get("BINDir", envir = .GlobalEnv)
} else {
x
}
map2gui <- gdxbinwider(filename, BINDir, gdxmap, mapping)
map2gui <- map2gui %>% dplyr::select(-all_binid) %>%
summarise(dplyr::across(everything(),~ if(is.numeric(.)) weighted.mean(., w=.data[['Weight']], na.rm = TRUE) else Modes(.)))
# In RStudio, ignore the (X) error unmatched bracket, everything is fine and all works.
map2gui$Weight <- NULL
map2gui[!colnames(map2gui) %in% mapping] <- lapply(map2gui[!colnames(map2gui) %in% mapping], function(x) if(is.factor(x)) (as.numeric(as.character(x))) else x)
map2gui <- map2gui %>% tidyr::pivot_longer(cols = where(is.numeric), names_to = c('item1', 'item2'), names_sep = "%") %>%
tidyr::pivot_wider(id_cols = c(dplyr::all_of(mapping), 'item1'), names_from = 'item2', values_from = 'value')
map2gui[] <- lapply(map2gui, function(x) if(is.numeric(x)) round(x, digits = 2) else x) # Rounding the results, comment if not needed
map2gui[is.na(map2gui)] <- 0 # By bringing these values from long to wide, there are undefined values and, therefore, NAs. BUT these are not real NAs, plus it's for modelling purposes on GAMS, which will ignore the 0s, so we can safely assign a 0 to the NAs.
if (writegdx == TRUE) {
allmaps <- paste0(mapping[1:length(mapping)], '.gdx')
gdxfilename <- paste('farmData', allmaps, sep = '_')
gdxreshape(map2gui, symDim = 3, order = c(1,2,0), gdxName = gdxfilename, symName = 'p_farmData')
return(map2gui)
} else
return(map2gui)
}
## runFarmDynfromBatch ----
Execute FarmDyn
@description
runFarmDynfromBatch() does as it says in the function.
@param FarmDynDir Directory where FarmDyn is located @param IniFile Name of the IniFile @param XMLFile Name of the XML file @param BATCHDir Directory where the .batch file is located @param BATCHFile Name of the .batch file
@return Executes FarmDyn from R @examples TODO write example
@seealso *Globiom?
@export runFarmDynfromBatch
runFarmDynfromBatch <- function(FarmDynDir, IniFile, XMLFile, BATCHDir, BATCHFile) {
# make sub directories
GUIDir <- paste(FarmDynDir,"GUI",sep="/")
BATCHFilePath <- paste(BATCHDir, BATCHFile, sep = "\\")
# General JAVA command
javacmdstrg <- r"(java -Xmx1G -Xverify:none -XX:+UseParallelGC -XX:PermSize=20M -XX:MaxNewSize=32M -XX:NewSize=32M -Djava.library.path=jars -classpath jars\gig.jar de.capri.ggig.BatchExecution)"
# append specific files to JAVA command
javacmdparac <- paste(javacmdstrg,IniFile,XMLFile,BATCHFilePath,sep = " ")
# create bat file
runbat = paste0(GUIDir,"/runfarmdyn.bat")
if (file.exists(runbat)) x=file.remove(runbat)
b = substr(runbat,1,2)
b = c(b,paste('cd',gsub("/", "\\\\",GUIDir)))
b = c(b,c("SET PATH=%PATH%;./jars"))
b = c(b,javacmdparac)
writeLines(b,runbat)
rm(b)
# execute farmdyn in batch mode
system(runbat)
}