Newer
Older
Sebastian Neuenfeldt
committed
<!-- README.md is generated from README.Rmd. Please edit that file -->
Some useful functions for working with (German) farm structure survey
(FSS) data.
You can install the GitLab version of FSS from
[GitLab](https://git-dmz.thuenen.de/mindstep/fss) with:
Sebastian Neuenfeldt
committed
``` r
devtools::install_git("https://git-dmz.thuenen.de/mindstep/fss")
devtools::install_git("https://gitlab.iiasa.ac.at/mind-step/fss")
Sebastian Neuenfeldt
committed
```
Then the Related R packages can be installed.
Sebastian Neuenfeldt
committed
``` r
library(FSS)
```
# Example
A little example for one specific function from the FSS package.
## Test a function
Here we will test one of the provided functions:
`generateFakeFSSData_DE()`. We generate some basic variables, which are
automatically produced. We set an additional variable to be generated,
namely C0300. The variable will be a continuous variable.
Sebastian Neuenfeldt
committed
``` r
FSS_data_DE <- generateFakeFSSData_DE(C0codes = "C0300")
#>
#> Build fake data
```
### Add a specific categorical variable
No we will add a specific variable, i.e. a categorical variable if a
farm is an organic farm. This will be randomly distributed. The
probability of a farm to be organic is 20%.
Sebastian Neuenfeldt
committed
``` r
library(tidyverse)
FSS_data_DE <- FSS_data_DE %>%
mutate(C0501=sample(c(0,1),
size = nrow(FSS_data_DE),
replace = TRUE,
prob = c(0.8,0.2)))
```
### Some analysis
After that we analyse the data regarding the number of farms that are
organic (C0501) for each year (C0008U1) and farm type (C0060UG1).
Sebastian Neuenfeldt
committed
``` r
FSS_data_DE %>% group_by(C0008U1,C0060UG1,C0501) %>%
count() %>%
pivot_wider(names_from = C0060UG1, values_from = n) %>%
knitr::kable()
```
| C0008U1 | C0501 | 1 | 2\_3 | 45 | 46\_48 | 5 | 6\_7\_8 |
|--------:|------:|------:|------:|------:|-------:|------:|--------:|
| 1999 | 0 | 57491 | 16693 | 29578 | 44526 | 33620 | 55483 |
| 1999 | 1 | 14461 | 4222 | 7491 | 10998 | 8288 | 13827 |
| 2003 | 0 | 55229 | 16216 | 28762 | 43023 | 32228 | 53946 |
| 2003 | 1 | 13748 | 4142 | 7093 | 10744 | 8018 | 13554 |
| 2007 | 0 | 53467 | 15357 | 27391 | 41918 | 31202 | 51658 |
| 2007 | 1 | 13150 | 3874 | 6794 | 10456 | 7782 | 12846 |
| 2010 | 0 | 51228 | 15182 | 26514 | 40054 | 29784 | 49768 |
| 2010 | 1 | 12838 | 3730 | 6667 | 9999 | 7495 | 12446 |
| 2013 | 0 | 14310 | 4257 | 7405 | 11242 | 8477 | 13920 |
| 2013 | 1 | 3764 | 1051 | 1810 | 2775 | 2143 | 3508 |
| 2016 | 0 | 49581 | 14520 | 25711 | 38544 | 28840 | 48287 |
| 2016 | 1 | 12510 | 3642 | 6350 | 9564 | 7200 | 12102 |
| 2020 | 0 | 47565 | 13932 | 24603 | 36770 | 28096 | 46413 |
| 2020 | 1 | 11938 | 3420 | 6248 | 9284 | 7030 | 11512 |