GitLab at IIASA

README.md 2.45 KiB
Newer Older
---
output:
  html_document: default
  pdf_document: default
---
Sebastian Neuenfeldt's avatar
Sebastian Neuenfeldt committed
# FSS

Some useful functions for working with (German) farm structure survey (FSS) data.

# Installation

You can install the GitLab version of FSS from [GitLab](https://git-dmz.thuenen.de/mindstep/fss) with:
```{r}
devtools::install_git("https://git-dmz.thuenen.de/mindstep/fss")
```
Then the Related R packages can be installed.
```{r}
library(FSS)
```

# Example

A little example for one specific function from the FSS package.

## Test a function

Here we will test one of the provided functions: `generateFakeFSSData_DE()`. We generate some basic variables, which are automatically produced. We set an additional variable to
be generated, namely C0300. The variable will be a continuous variable.

```{r}
FSS_data_DE <- generateFakeFSSData_DE(C0codes = "C0300")
```
### Add a specific categorical variable

No we will add a specific variable, i.e. a categorical variable if a farm is an organic farm. This will be randomly distributed. The probability of a farm to be organic is 20%.

```{r,message=FALSE}
library(tidyverse)
FSS_data_DE <- FSS_data_DE %>% 
  mutate(C0501=sample(c(0,1),
  size = nrow(FSS_data_DE),
  replace = TRUE,
  prob = c(0.8,0.2)))
```


### Some analysis

After that we analyse the data regarding the number of farms that are organic (C0501) for each year (C0008U1) and farm type (C0060UG1).

```{r}
FSS_data_DE %>% group_by(C0008U1,C0060UG1,C0501) %>% 
  count() %>% 
  pivot_wider(names_from = C0060UG1, values_from = n) %>% 
  knitr::kable()
```
| C0008U1| C0501|     1|   2_3|    45| 46_48|     5| 6_7_8|
|-------:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|
|    1999|     0| 57491| 16693| 29578| 44526| 33620| 55483|
|    1999|     1| 14461|  4222|  7491| 10998|  8288| 13827|
|    2003|     0| 55229| 16216| 28762| 43023| 32228| 53946|
|    2003|     1| 13748|  4142|  7093| 10744|  8018| 13554|
|    2007|     0| 53467| 15357| 27391| 41918| 31202| 51658|
|    2007|     1| 13150|  3874|  6794| 10456|  7782| 12846|
|    2010|     0| 51228| 15182| 26514| 40054| 29784| 49768|
|    2010|     1| 12838|  3730|  6667|  9999|  7495| 12446|
|    2013|     0| 14310|  4257|  7405| 11242|  8477| 13920|
|    2013|     1|  3764|  1051|  1810|  2775|  2143|  3508|
|    2016|     0| 49581| 14520| 25711| 38544| 28840| 48287|
|    2016|     1| 12510|  3642|  6350|  9564|  7200| 12102|
|    2020|     0| 47565| 13932| 24603| 36770| 28096| 46413|
|    2020|     1| 11938|  3420|  6248|  9284|  7030| 11512|