<!-- README.md is generated from README.Rmd. Please edit that file -->

Sebastian Neuenfeldt's avatar
Sebastian Neuenfeldt committed
# FSS

Some useful functions for working with (German) farm structure survey
(FSS) data.

# Installation

You can install the GitLab version of FSS from
[GitLab](https://git-dmz.thuenen.de/mindstep/fss) with:

``` r
devtools::install_git("https://git-dmz.thuenen.de/mindstep/fss")
Sebastian Neuenfeldt's avatar
Sebastian Neuenfeldt committed
devtools::install_git("https://gitlab.iiasa.ac.at/mind-step/fss")
```

Then the Related R packages can be installed.

``` r
library(FSS)
```

# Example

A little example for one specific function from the FSS package.

## Test a function

Here we will test one of the provided functions:
`generateFakeFSSData_DE()`. We generate some basic variables, which are
automatically produced. We set an additional variable to be generated,
namely C0300. The variable will be a continuous variable.

``` r
FSS_data_DE <- generateFakeFSSData_DE(C0codes = "C0300")
#> 
#>  Build fake data
```

### Add a specific categorical variable

No we will add a specific variable, i.e. a categorical variable if a
farm is an organic farm. This will be randomly distributed. The
probability of a farm to be organic is 20%.

``` r
library(tidyverse)
FSS_data_DE <- FSS_data_DE %>% 
  mutate(C0501=sample(c(0,1),
  size = nrow(FSS_data_DE),
  replace = TRUE,
  prob = c(0.8,0.2)))
```

### Some analysis

After that we analyse the data regarding the number of farms that are
organic (C0501) for each year (C0008U1) and farm type (C0060UG1).

``` r
FSS_data_DE %>% group_by(C0008U1,C0060UG1,C0501) %>% 
  count() %>% 
  pivot_wider(names_from = C0060UG1, values_from = n) %>% 
  knitr::kable()
```

| C0008U1 | C0501 |     1 |  2\_3 |    45 | 46\_48 |     5 | 6\_7\_8 |
|--------:|------:|------:|------:|------:|-------:|------:|--------:|
|    1999 |     0 | 57491 | 16693 | 29578 |  44526 | 33620 |   55483 |
|    1999 |     1 | 14461 |  4222 |  7491 |  10998 |  8288 |   13827 |
|    2003 |     0 | 55229 | 16216 | 28762 |  43023 | 32228 |   53946 |
|    2003 |     1 | 13748 |  4142 |  7093 |  10744 |  8018 |   13554 |
|    2007 |     0 | 53467 | 15357 | 27391 |  41918 | 31202 |   51658 |
|    2007 |     1 | 13150 |  3874 |  6794 |  10456 |  7782 |   12846 |
|    2010 |     0 | 51228 | 15182 | 26514 |  40054 | 29784 |   49768 |
|    2010 |     1 | 12838 |  3730 |  6667 |   9999 |  7495 |   12446 |
|    2013 |     0 | 14310 |  4257 |  7405 |  11242 |  8477 |   13920 |
|    2013 |     1 |  3764 |  1051 |  1810 |   2775 |  2143 |    3508 |
|    2016 |     0 | 49581 | 14520 | 25711 |  38544 | 28840 |   48287 |
|    2016 |     1 | 12510 |  3642 |  6350 |   9564 |  7200 |   12102 |
|    2020 |     0 | 47565 | 13932 | 24603 |  36770 | 28096 |   46413 |
|    2020 |     1 | 11938 |  3420 |  6248 |   9284 |  7030 |   11512 |